
7AD-fli37 084 SOFTWARE CUISITION RESOURCE EXPENDITURE
(SRE) DATA 1/2.

COLLECTION METHODOLOGY(U) MITRE CORP BEDFORD MA

R L DUMAS DEC 83 MTR-9831 ESD-TR-83-2:14

UNCLAFRSSIFIED F19628-82-C-8881 F/G 9/2 N

_-, ,' , ,'I - ,,,b , ". , ., . -. '. - . -. . ,.-f-.. -.... _.. -.- .

I.

. -- &

1111111=8
1.4.11iiii1,=.25 iff 11 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-J963-A

14-4

%

ESD-TR-83-214 MTR-9031

FINAL REPORT:
SOFTWARE ACQUISITION RESOURCE EXPENDITURE (SARE)

DATA COLLECTION METHODOLOGY

By
R. L. DUMAS

DECEMBER 1983

0 Prepared for

COMPTROLLER, COST ESTIMATING AND ANALYSIS DIVISION
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND-UNITED STATES AIR FORCE

Hanscom Air Force Base, Massachusetts

mp

JAN 2 3 10,-4

C31 Project No. 6810
Prepared by

LiJ Approved for public release; Tdistribution unlimited. THE MITRE CORPORATIONdBedford, Massachusetts

Contract No. F19628-82-C-0001

84 O 20 03:,

..... .-.-.-.....-.-...... -......-. "......

When U.S. Government drawings, specifica-
tions, or other data are used for any purpose
other than a definitely related government pro-
curement operation, the government thereby in-
curs no responsibility nor any obligation
whatsoever; and the fact that the government
may have formulated, furnished, or in any way
supplied the said drawings, specifications, or
other data is not to be regarded by implication
or otherwise, as in any manner licensing the
holder or any other person or corporation, or
conveying any rights or permission to manufac-
ture, use, or sell any patented invention that may
in any way be related thereto.

Do not return this copy. Retain or destroy

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

JOSEPH P. DEAN, Capt, USAF

SARE Project Officer

RONALD S. BOWEN, Lt Col, USAF

Director of Cost Analysis

Comptroller

UNLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARINGS

Unclassified______________________
2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTION/AVAI LABILITY OP REPORT

2ba. OECLASSIFICATION/OOWNGRADING SCHIEDULE Approved for public release; distribution
unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBERIS)

ESD-TR-83-214 ________________________

Ga. NAME OF PERFORMING ORGANIZATION - OFFICE SYMEOL 7&~ NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State wid ZIP Codu) 7b. ADDRESS (City. Slae, and ZIP Code)

Burlington Road

8& NAME OP FUNOING/SPONSORING S8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Electronic4, Systems Division ELE ME NT NO. NO. NO. NO.

Hanscom AFB, MA 01731 161
* 11. TITLE (inluIde Secuinty ClasuIfetio.J

12. PERSONAL AUTHORIS)

R .; L ._ Dumas_ _ _r15._-
AGECOUN

117. COSATI CODES IS. SUEJECT TERMS ICon tinue on rownie if necesiary and identify by block. number)
FIELD GROUP SUE. GR, SARE METHODOLOGY

SOFTWARE COST ESTIMATION
WORK BREAKDOWN STRUCTURE

FI. AEST RACT IContinue on remf necossey and identify by block n..mberl

One of the major shortfalls in software cost estimation is the lack of a well-defined,
well-structured database. This report is the culmination of a multi-year effort to develop
contractual documents to effect quality software data collection on defense programs. It
includes as attachments a proposed draft military standard for software work breakdown
structures and a data item description for reporting project attributes that impact
software cost and schedule. The evolution of the documents is discussed and procedures

o * for implementing data collection on defense programs are provided. Readers are asked to
comment on the SARE methodology using a questionnaire provided as the third attachment.

20. DISTRIBUTION/AVAILASILITY OF ABSTRACT 21. AESTRACT SECURITY 'CLASSIFICATION

UNCLASSI FIEO/UN LI MITE D C SAME AS APT. 91 OTIC USERS 0 Unclassified
22. NAME OF RESFONS19LE INDIVIDUAL 22b. TELEPHONE NUME 22c OFFICE SYMEOL

"?cIO.A Code4

Susan R. Gilbert (617) 271-80881

DO FORM 1473,83 APR EDITION OF 1 JAN 721IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

"UIY CLAMIFCAVOW or YrD PAGE

. (Concluded)

RESRCE EXPENDIUE (SAKE) DATA COLLECTION METHODOLOGY

4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Iaw - s c

... ... : ,., ~ m , .. -, . -,, ,. - . - .. n - o .-. -*:: .. . *, . . - . . . ,. . .. --.. -, r .r- .. -. r : "

ACKNOWLEDGEMENTS

The SARE methodology has taken on several forms since its
inception. During that time many individuals have contributed to
its development. The original research was performed by
William E. Byrne, Donna H. Cosgrove, Manfred P. Friedman,
John B. Glore, Shashi Phoha, and William H. Stein, all of the MITRE
Corporation, under the leadership of John B. Glore. Through most of
the SAgE development, guidance and direction were provided by
Maj. Joseph A. Duquette, then of AFSC ESD/ACCI and presently of
USAF/ACMC. More recently guidance has been provided by
Capt. Wesley W. Jones, ESD/ACCI, and Capt. Joseph P. Dean, ESD/ACCE.

William E. Byrne and Roger L. Dumas were responsible for
intermediate versions of the SARE documents with guidance from
Robert L. Hamilton. The present version of the SARE methodology
presented herein was prepared by Roger L. Dumas with contributions
from Capt. Joseph P. Dean, ESD/ACCE, Charles S. Enright, Peter
Frasca, Mary Jean Hayes, Robert G. Howe, John H. James, and William
H. Stein. Many others, too numerous to list, have reviewed drafts
of the documents over the past several years and provided valuable
comments.

This document has been prepared by The MITRE Corporation under
Project 6810, Contract F19628-82-C-0001. The contract is sponsored
by the Electronic Systems Division, Air Force Systems Command,
Hanscom Air Force Base, Massachusetts.

*4,/

-ii

p ?

PREFACE

HIL-STD-X, dated July 1983, shown as Attachment 1, and Data
Item Description, Attachment 2, have tvo sets of page numbers. They
say be pulled out and used as stand-alone documents.

2I

D4

.4'1

5,_. , ° / _. ' ,, ' ,' .,...,. .6 . " ' .. ,. '' ,. .- ,

TABLE OF CONTENTS

SECTION PAGE

LIST OF ILLUSTRATIONS 5

LIST OF TABLES 5

1 OVERVIEW OF SARE REPORTING 7

FRAMING THE PROBLEM 7

ORGANIZATION OF THIS REPORT 9

SOFTWARE DATA COLLECTION IN THE DEFENSE
ENVIRONMENT 9

SARE CONCEPT OF OPERATION 16

EVCLUTION OF THE SARE METHODOLOGY 21

2 OVERVIEW OF DRAFT MIL-STD-X: SOFTWARE WORK BREAKDOWN
STRUCTURES FOR DEFENSE SYSTEM ACQUISITIONS 22

WHY A DRAFT MIL-STD? 22

DERIVATION OF DRAFT MIL-STD-X REQUIREMENTS 22

KEY WBS ISSUES ADDRESSED 23

SUMMARY OF DRAFT MIL-STD-X REQUIREMENTS 25

3 OVERVIEW OF DRAFT SARE DATA ITEM DESCRIPTION 28

WHY A DID? 28

ORIGIN OF THE SARE DID REQUIREMENTS 28

KEY ISSUES ADDRESSED 29

SUMMARY OF THE SAE DID REQUIREMENTS 30

4 SARE INDUSTRY/GOVERNMENT REVIEW 31

PLANS FOR A TWO-PHASE INDUSTRY/GOVERNMENT REVIEW 31

SUMMARY OF T# LIMITED PHASE I REVIEW 31

3

TABLE OF CONTENTS (concluded)

SECTION PAGE

5 CONCLUSIONS AND RECOMMENDATIONS 34

CONCLUSIONS 34

RECOMMENDATIONS 35
-; LIST OF REFERENCES 37

GLOSSARY 40

ATTACHMENTS

p DRAFT MILITARY STANDARD: SOFTWARE WORK BREAKDOWN
STRUCTURES FOR DEFENSE SYSTEM ACQUISITIONS 41

2 DRAFT DATA ITEM DESCRIPTION: SOFTWARE ACQUISITION
RESOURCE EXPENDITURE (SARE) DATA COLLECTION 79

3 SARE EVALUATION QUESTIONNAIRE 123

%"

V4

LIST OF ILLUSTRATIONS

FIGURE PAGE

1-1 Key Documents Impacting Software Data Collection 10

1-2 Work Packages and Cost Accounts in Relation to
the CWBS 15

1-3 SARE Implementation 18

1-4 Model CDRL Entry 19

LIST OF TABLES

TABLE PAGE

1-1 MIL-STD-881A Work Breakdown Structure 12

..'5

4'

.4.4% , " - , ' .t - , . " • ,• - - ,

SECTION 1

OVERVIEW OF SARE REPORTING

FRAMING THE PROBLEM

The Department of Defense (DoD) continues to experience
difficulty estimating the cost of software development on defense
system acquisition programs. Factors contributing to cost estimate
uncertainty are classified into three categories: project-related,
technology-related, and deficiencies in the science of software cost
estimation.

Project-related factors include:

o Poor requirements definition - the inability to state
specific functional and performance requirements of a
software system in an unambiguous way.

o Requirements instability - the inability to pin down
functional and performance requirements early in a program.

The technology-related factor has to do with the relative
immaturity of software technology and its perception as an art form
rather than a science. More specifically:

o There exist no structured analysis technique and program
design methodology that will together produce a
well-defined, well-structured statement of functional
requirement and translate that statement into a unique
system design, regardless of the analyst or designer.

-4 As a result, the configuration of a hardware/software system
designed to meet a specific functional requirement can take on many
varied forms, with a wide range of potential costs.

Project and technology factors aside, a final source of
software cost estimation uncertainty has to do with the available
software cost models and the databases on which their estimates are

-i based.

Over the past 20 years, the number of software cost models has
increased significantly (Nelson 1966, Aron 1969, Tecolote 1974,
Wolverton 1974, Putnam 1978, Herd at al. 1977, Freiman and Park
1979, Walston and Felix 1977, Black et al. 1977, Bourdon and
Duquette 1978, Boehm 1981). Early models tended to be poorly

.°o

7 I$ eLANK

I&,

defined and based on poorly defined data. The definition of the
models themselves has improved in recent years. However, by and
large, the databases on which they are based continue to be suspect.
There is and always will be a need to collect data on software
projects to validate and calibrate cost models as software
technology continues to evolve.

There are presently a limited number of databases available to
support software cost estimation research. Several early models
were based on data from 169 projects compiled by the Systems
Development Corporation (Fleishman 1966). Although the SDC data

included an uncommonly large number of factors affecting software
development, the data was from relatively small projects (most less

than 10K lines of code), all of which were completed p" ">r to 1966.

The primary source of data for several of the mo recent
models has been the Data and Analysis Center for Soft% (DACS)
located at Griffiss Air Force Base, New York. The DAC aintains
several databases (DACS 1982), the principal being thE -'uctivity
Dataset of roughly 400 projects. The major shortfallc 7 ne
Productivity Dataset are the limited number of factors -,counted for
and poor definition. Factors such as "project size" and "project
effort" mean different things for different projects in the dataset.

Several other cost models are based on proprietary or
unpublished databases. A recent model, the Constructive Cost Model
(COCOMO) (Boehm 1981), has a published database of 63 projects for
which "considerable effort has been devoted to ensuring that the
data in the COCOMO database is consistent with respect to cost
driver attribute ratings, and the definitions of such quantities as
development, man-month, project, and (delivered source instructions)
agree with the COCOMO assumptions." COCOMO however, is the
except ion.

The SARE data collection methodology addresses this final

* software cost estimation deficiency, specifically, the lack of a
quality database of software development costs and project
attributes for defense system acquisition programs. The SARE
development has been directed by the Electronic Systems Division
(ESD) of AFSC with funding from AFSC and other branches of DoD. The
methodology is consistent with standard military procurement
practices and can be applied to all major DoD programs.

8

V%

ORGANIZATION OF THIS REPORT

The remainder of this section provides background to help the

reader understand the context in which SARE data collection is

conducted. It describes the features of the defense system
acquisition environment that impact software cost data collection,
the SARE concept of operation, and a summary of the evolution of the
SARE methodology.

Sections 2 and 3 provide overviews of the two documents used to

implement SARE data collection: a draft military standard for
V.! software work breakdown structures (WBSs) and a draft data item

description (DID) for reporting software attributes on defense

programs. The documents themselves appear in Attachments 1 and 2 of
this report.

Section 4 discusses ESD's plans to conduct an industry/

AV government review of the SARE documents and summarizes the results
of a limited, preliminary review conducted during the Spring of

/ .' 1983. Readers are asked in Section 4 to provide comments to ESD/ACC

regarding implementation of the SARE methodology. An evaluation
questionnaire is provided in Attachment 3 to assist reviewers.

Section 5 states the major conclusions of the SARE development

effort and provides recommendations for following up the effort.

SOFWARE DATA COLLECTION IN THE DEFENSE E NVIRONMENT

To understand the operation of the SARE methodology, one must

first have a rudimentary understanding of the manage-rial and
technical aspects of the environmert in which it operates. The key

$-. DoD directives, instructions, and MIL-STDs which frame that
environment are listed in Figure 1-1.

Any system that attempts to collect resource expenditure data

(that is, dollars and manhours) must be integrated with government
and contractor management systems. This, in turn, implies

consistency with the cost/schedule control systems criteria

(C/SCSC), delineated in DoDI 7000.2, "Performance Measurement on

Selected Acquisit ion Programs."

The C/SCSC are a set of characteristics a contractor's

management system must possess to assure the government tiat the
contractor is capable of planning and controlling costs and schedule

during the system development. There are 35 criteria arranged in
the five categories summarized below:

*°9

*4'-'5'

.11

#b: om .. -.
=

- -..... . - m, . i -.. -. .-- ..-- ,--.- ,. --, -.- ; -C--:

Re,

KEY DOCUMENTS IMPACTING SOFTWARE DATA COLLECTION

FINANCIAL

DoDD 5000.1 Major System Acquisitions

V DoDD 7000.1 Resource Management Systems of the Department of

Defense

DoDI 7000.2 Performance Measurement on Selected Acquisitions

DoDI 7000.10 Contract Cost Performance, Funds Status and
Cost/Schedule Status Reports

DoDI 7000.11 Contractor Cost Data Reporting

MIL-STD-881A Work Breakdown Structures for Defense Materiel
Items

AFSCP 173-5 Cost/Schedule Control Systems Criteria Joint
Implementation Guide

AFSCP 173-6 Cost/Schedule Control System Criteria Joint
Surveillance Guide

TECHNICAL

MIL-STD-483 Configuration Management Practices for Systems,
Equipment, Munitions and Computer Programs

MIL-STD-490 Specification Practices

MIL-STD-1521A Technical Reviews and Audits for Systems,
Equipment, Munitions and Computer Programs

MIL-STD-1679 Weapon System Software Development (Navy)

4j,

Figure 1-1. Key Documents Impacting Software Data Collection

%4 °10

1. Organization - define contractual effort and assign
responsibilities for the work (5 criteria).

2. Planning and Budgeting - plan, schedule, budget, and
authorize the work (11 criteria).

3. Accounting - accumulate costs of work and materials
(7 criteria).

4. Analysis - compare planned and actual costs and analyze
variances (6 criteria).

5. Revisions and Access to Data - incorporate changes and
develop estimates of final costs; allow the government
access to internal data to verify conformance (6 criteria).

AFLCP/AFSCP 173-5, "C/SCSC Joint Implementation Guide,"
discusses the criteria in depth and describes the procebs by which a
contractor's cost/schedule control system is validated.

The first set of criteria, Organization, requires the
contractor "define all authorized work and related resources to meet
the requirements of the contract, using the framework of the CWBS."

The C/SCSC defer specific CWBS requirements to MIL-STD-881A,
'"ork Breakdown Structures for Defense Materiel Items."
MIL-STD-881A, in turn, defines a WBS to be "a product-oriented
family tree composed of hardware, services and data that result from
project engineering efforts during the development and production of
a defense materiel item, and that completely defines the
project/program." (Note the absence of "software" in the WBS
definition.) A contract WBS (CWBS) is simply a WBS applied to a
particular contract.

The first three levels of a typical MIL-STD-881A CWBS for a
defense system are presented in Table I-I. This level of CWBS is

normally mandated on the contractor by the government. The
contractor then extends the CWBS to lower levels during the program,
in accordance with MIL-STD-881A, to reflect how the work will be
performed.

The Planning and Budgeting criteria require the contractor
plan, schedule, and budget all authorized work in cost accounts that
are located beneath the lowest level CWBS elements. A cost account
is a managerial control point at which actual cost is accumulated
and compared to budgeted cost. Cost accounts are further broken

U,-% 11

TABLE 1-1

MIL-STD-881A WORK BREAKDOWN STRUCTURE

Level Element

I Defense System
2 Prime Mission Equipment

, 3 Integration and Assembly

3 Hardware Subsystem or End Item

3 Hardware Subsystem or End Item
3 Auxiliary Equipment

'4 2 Training
3 Equipment

3 Services
3 Facilities
2 Peculiar Support Equipment

3 Organizational/Intermediate
3 Depot
2 Systems Test and Evaluation
3 Development Test and Evaluation

3 Operational Test and Evaluation

3 Mockups

3 Test and Evaluation Support
3 Test Facilities
2 System/Program Management

J 3 Systems Engineering
3 Project Management
2 Data
3 Technical Publications

-A 3 Engineering Data
3 Management Data

3 Support Data
3 Data Depository
2 Operational/Site Activation
3 Contractor Technical Support

3 Site Construction
3 Site/Ship/Vehicle Conversion
3 System Assembly, Installation and

Checkout on Site
2 Common Support Equipment
3 Organizational/Intermediate
3 Depot

.1

::

.4.-..

I~ ~ ~~~ ~~ - 7 ; ; ; . • . + -. W • . - . .,, -. .- . . -.- , " ""• "

TABLE 1-1 (Concluded)

Level Element

2 Industrial Facilities

3 Construct ion/Conversion/Expansion
3 Equipment Acquisition or

Modernization
3 Maintenance
2 Initial Spares and Initial Repair Parts

-Jm

4.Ok

:::

'4,

.4

S

'.' 13
".-

• 4'' - '' ' , " " " ' ' ' '
"

" I " "' + - +, ' , :. - , +

down into short-term work packages (normally of one to two months
duration) to schedule work in detail and measure the "earned value"
of work performed. The contractor accumulates financial data at the
cost account level, summarizes the information up through higher
levels of the CWBS, and reports actual versus budgeted expenditures
in monthly Cost Performance Reports (DI-F-6000C). Figure 1-2
depicts the relationships among the CWBS, contractor organization
structure, cost accounts and work packages.

To summarize the discussion thus far, consistent software cost
data collection must be accomplished through a standard WBS.
MIL-STD-881A is the authority governing WBS development but is
presently deficient in the software area. This has spurred the
creation of a draft software WBS military standard as part of the
SARE methodology.

The C/SCSC deal with the management side of system acquisitions
but stay away from technical details. The primary documents dealing
with the technical side of software development are MIL-STD-483,
"Configuration Management Practices for Systems, Equipment,
Munitions and Computer Programs;" MIL-STD-490, "Specification
Practices;" and MIL-STD-1521A, "Technical Reviews and Audits for
Systems, Equipment, Munitions and Computer Progrsns."

Together these documents define the principal software
products, establish procedures for tracking and controlling changes,
and establish program milestones at which intermediate products can
be evaluated to measure technical progress.

Like MIL-STD-881A, these standards had their roots in
hardware-oriented acquisitions and have been minimally updated in
recent years to take into consideration aspects of the acquisition
process which are peculiar to software. MIL-STD-1679, "Weapon
System Software Development," is a Navy sponsored standard that
attempts to fill the voids left by the others. Unfortunately, it
differs significantly in its terminology and approach to the
acquisition process. A new military standard, MIL-STD-SDS,
"Proposed Military Standard on Defense System Software Development,"

has been proposed by the Joint Logistics Commanders (JLC).
MIL-STD-SDS attempts to address the same needs as MIL-STD-1679 but
using terminology and a model of the acquisition process similar to
MIL-STD-483, MIL-STD-490, and MIL-STD-1521A.

At this writing, MIL-STD-SDS remains a draft. The SARE
documents presented in this report reflect the acquisition process
presently defined by MIL-STD-483, MIL-STD-490, and MIL-STD-1521A.
Revisions needed to make the SARE documents consistent with

14

"#4 •

- .1

*00

'114
0

T--4

00

NOISAIOC3 NISIIO UO~k rX

N ~I I I
W7_ ZA7

15i

7. Z Z F- 7

MIL-STD-SDS primarily involve terminology and can be made if and
when MIL-STD-SDS is approved.

In summary, the SARE data collection methodology must balance

the program management requirements of the C/SCSC and MIL-STD-881A
with the technical products and program milestones defined by
MIL-STD-483, MIL-STD-490, and MIL-STD-1521A.

SARE CONCEPT OF OPERATION

. . Software cost models take in attributes of software projects,
relate the attributes to man-hours and cost through relationships
derived from past experience, and put out cost and schedule
estimates. Thus, the SARE methodology has to collect cost (that is,
dollars and man-hours) and schedule data on the one hand, and

.% technical characteristics to correlate to cost on the other hand.
This must be done within the environment described in the previous
section.

The first requirement of the SARE methodology is to establish
%-N well-defined, software-related CWBS elements for consistent cost

data collection across programs. The form taken for the SARE CWBS
elements is a draft military standard presented as Attachment I and
discussed in Section 2. Draft MIL-STD-X, as it is referred to, is
entitled "Draft Military Standard: Software Work Breakdown
Structures for Defense System Acquisitions."

Draft MIL-STD-X extends the CWBS requirements of MIL-STD-881A
in the area of software by providing instructions to the government
agency and contractor for the identification of software components
in the CWBS and the lower level extension of the CWBS with software
products and services.

The second requirement of the SARE methodology is to provide a
medium for data collection. The mechanisms for reporting data on
defense programs are data item descriptions (DIDs) referenced in the
contract data requirements list (CDRL) of the contract. A DID
defines a reporting requirement that remains relatively invariant
from program to program, that is, the data items to be reported and
the reporting format. The CDRL specifies conditions for delivery,
such as delivery dates and the distribution list. The CDRL also
specifies any special tailoring instructions for the DIDs relative
to the particular program.

The draft DID developed to effect SARE data collection is
presented as Attachment 2 and discussed in Section 3.

16

i

Figure 1-3 demonstrates how the SARE documents are placed on
contract. When a request for proposal (RFP) package is released in
a solicitation or invitation for bids, it contains among other
things, a statement of work (SOW) and the CDRL. The SOW states the
contractor tasks needed to develop the defense system. One section
of the SOW addresses the contractor's program management system,
including adherence to the C/SCSC and MIL-STD-881A.

To invoke the SARE MIL-STD-X, a sentence must be added to the

CWBS paragraph of the SOW. A model SOW paragraph used to establish
CWBS requirements, including adherence to Draft MIL-STD-X, is
provided below:

Contract Work Breakdown Structure (CWBS)

The contractor shall maintain the CWBS and dictionary in
compliance with MIL-STD-881A. The contractor shall extend the
CWBS to lower levels to reflect how the work is performed. The
extension shall include all configuration items. The CWBS
shall also be extended to account for software development

activities in accordance with MIL-STD-X. The contractor shall
use the CWBS as the primary framework for planning, budgeting,
and reporting cost and schedule status to the government. The
contractor shall update the CWBS as additional system
definition is accomplished and may propose alternatives for
improvement. Changes to the CWBS or associated definitions
require prior approval of the government. The contractor shall
deliver the CWBS in accordance with the CDRL.

The SOW also instructs the contractor to report SARE data
during the program. An entry similar to the following would appear

in the program management section of the SOW:

Software Acquisition Resource Expenditure (SARE) Re~porting

The contractor shall contribute to the SARE database by
providing data on the software development effort in accordance
with the CDRL. The contractor shall designate a focal point
responsible for SARE reporting. The source of the cost and
man-hour data shall be cost accounts established in accordance
with DoDI 7000.2. The source of the technical data shall be
the technical personnel responsible for the software
development.

Finally, the CDRL must include an entry specifying delivery
requirements for the SARE DID. Figure 1-4 provides a model CDRL
entry that establishes the preferred level of SARE reporting. The
content of each block in the CDRL entry is defined in the DD

17

5= " " " " " ' " "
°

" ° • = " " " , , . . . - . . - . - , " . . " . " . " . . • •. . ' ' , '

~3Nj

1%~%

* VP.
a.

N:
g

VP
4,

(wU 2

4,- -

2 ~0
.44 ~

I I I I I I I I

soW Ji 0

t~ ~t4

0= 2

4
I II I) -

I *0 I
= .9.4
- I -

U' I Th I/
a-4

S

'K,
4
I -

up I O

to

-,

.9.4Ca-.U
.4

.4

'43~ 4,

a' a

18
S.,

at

CONTRACT DATA RUQUIEMINTS UST
ATG M - To mumT - SYUTIATM

CATIOR
ToVSN CONUY'3 CNTACrOMTO TOLEO VIAC'Q 'IIW OF GAT&TI. ?#Y',I :- S5 "i " ""~ 1"--*-"' --- """ 'a,

SgCWN U5 L ILUases ILSUSYSYLE OVIIF $'DAY orm~v,.

A005 Software AtC oletion oreExedtrSAR AquisitionResource Expenditure ESD/AC Beke B6 k1Tee B _k 16

DI-F-XXx SOW Para. 3.4 XX N See BIk 1

Blk 4: Refer to backup sheet.
Blks 10 to 13: Refer to backup sheet.

TOT ALi/

36

Sequence No. A0D5 Backup Sheet

!DI-F-XXXX, BARE Dot& Collection

Block . Report manhour and dollar expenditures on the Resource
Expenditure Summry Form for the CWBS elements established in

accordance with NIL-STD-X down to and including the CPC level
_ _ _ _ _(level 6). Report manhour and dollar expenditures for other CWBS

I 6 elements related to software under Training, System Test &
Evaluation, System/Program Management, and Data down to level 4.

.mom Blocko 10 o 13. The delivery dates for the five forms contained in
DI-F-XXXX, SARE Data Collection, are as follows:

Form 1k 10 1k 11 Blk 12" Blk 13"

Project 5 Times -- 45 DAC 30 CD after PDR

OD,-..1423 Sumary 30 CD After CDR
30 CD After FQT
At Contract End

CPCI Sumary 4 Times -- 30 CD 30 CD After CDR
After PDR 30 CD After FQT

At Contract End

CPC Summary 3 Times -- 30 CD 30 CD After FQT
After CDR At Contract End

Database 4 Times -- 30 CD 30 CD after CDR
Sumary After PDR 30 CD after FQT

At Contract End

Resource Quarterly 30 CD 120 DAC
Expenditure After
Summary End of

Quarter

* DAC -Calendar Days After Contract Award
CD -Calendar Days

Figure 1-4. Model CDRL Entry

19

.. :. . .
, ., -e ,: ¢ ,: ': ; ,. : ,. € ,. . , '..-a *.,. ., -,.-.. . .,. . . -. . ..-- . -

Form 1423 instruction sheet. However, a cursory explanation of DD

Form 1423 in relation to the SARE requirements is provided below:

o Block 1 contains the CDRL entry sequence number. "A005" is

used in Figure 1-4 for illustration. The actual sequence
number for the SARE DID in the CDRL would appear in Block 1.

o Blocks 2 and 3 provide the title and subtitle of the SARE

DID.

o Block 4 will contain the official SARE DID number, once

assigned.

o Block 5 requires a reference to the SOW paragraph that

states the contractor will provide SARE data. "SOW para.
3.4" is used for illustration.

o Block 6 indicates the technical office that is officially

requesting the data. "ESD/AC" is used for illustration.

o "XX" appears in Block 7 to indicate that a DD Form 250,

"Material Inspection and Receiving Report," is not required.

"N" appears in Block 8 to indicate that CDRL requirements

for approval and distribution are not applicable. Block 9
is left blank. (Block 9 is normally used when an
integrating contractor is to receive a copy of the data).

o Blocks 10 to 13 establish delivery dates. Because the SARE

DID contains five forms with differing delivery
requirements, the delivery dates are deferred to Block 16.

o Block 14 lists the offices receiving copies of the data.

Block 15 indicates the total number of copies to be
delivered.

o Block 16 specifies any special delivery requirements and

tailoring instructions. In Figure 1-4, Block 16 refers the

contractor to a CDLR back-up sheet to establish delivery

dates for the five SARE forms.

The delivery dates in the model CDRL entry are geared to major

program milestones when new information is naturally available to
the contractor. This results in least-cost reporting while

providing a time series of data to explain changes that occurred

during development and impacted initial estimates.

20

h . . * . . 4 .A4- -4 -4. . 4.44.. 4 . '*. . .

ATi

The reporting schedule in Figure 1-4 is recommended for most
programs. However, changes can be made to meet program-peculiar
needs. For example, if there will be long lapses between
milestones, the reporting dates can be made annual or semi-annual,
rather than related to program milestones.

EVOLUTION OF THE SARE METHODOLOGY

The SARE methodology has taken on several forms since its
inception. The basic requirements for a SARE data collection system
were originally analyzed in 1978. The result of the analysis was a
recommendation for a fully automated data collection and management
system. The first draft of a proposed SARE DID was released as a
working paper in December 1978 and later revised and re-released as
a technical report in September 1979. As a self-contained document,
the original SARE DID was comprehensive and voluminous. A decision
was made in 1980 to partition the DID into two draft MIL-STDs and a
simplified DID while proceeding with the development of a prototype
database management system.

The first MIL-STD was the predecessor of Draft MIL-STD-X

presented in this report. The second MIL-STD was a reduced version
of the cost driver attributes defined in the original SARE DID. The
third document, a draft DID, specified magnetic tape formats for

reporting data to the government.1

The SARE data collection system, configured as two draft
HIL-STDs, a DID and a prototype data management system, was pilot
tested on an ESD program in 1982. Draft MIL-STD-X and the Draft
SARE DID presented in this report evolved from their predecessors
based on experiences gained during negotiations with the contractor
and additional research to bring the methodology up to date with
more recent cost models. The rationale behind the present
configuration of the SARE documents is discussed in Sections 2
and 3.

I The original SARE DID and subsequent versions were internal
reports, not in the public domain, and cannot be referenced

directly by this report.

-4

12

. 1-

,."~

SECTION 2

OVERVIEW OF DRAFT MIL-STD-X: SOFTWARE WORK
BREAKDOWN STRUCTURES FOR DEFENSE SYSTEM ACQUISITIONS

WHY A DRAFT MIL-STD?

A MIL-STD format was chosen for the SARE CWBS elements for
several reasons. For one, the objective of the SARE CWBS elements
is to enforce uniform cost reporting across defense system
acquisition programs. A MIL-STD format is most appropriate for
meeting that objective. Also, it is likely that if MIL-STD-X is
adopted, it will be incorporated into a revision of MIL-STD-881A.
Emulation of the structure of MIL-STD-881A will make the connection
between Draft MIL-STD-X and MIL-STD-881A clearer to government
personnel and contractors during initial applications.

DERIVATION OF DRAFT MIL-STD-X REQUIREMENTS

As stated in the evolution of the SARE methodology, the

MIL-STD-X CWBS elements were part of the original SARE DID. They
were developed by J. B. Glore of The MITRE Corporation based on his
experiences supporting various ESD programs and his earlier work on
the ESD Software Acquisition Management Guidebooks (Glore and
Bjerstedt 1977; Glore 1977). The Draft MIL-STD-X (Attachment 1)
contains within its appendices a revised version of the original
SARE CWBS elements.

The "front-end" requirements of Draft MIL-STD-X were added

following the test application on an ESD acquisition program to
address procedural issues not covered by the original DID. These
requirements were derived based on a review of the following
ESD-managed acquisition programs:

o JTIDS System Exercisor o TRI-TAC CSCE
o MILSTAR o OTH-B
o OASIS o SPADOC 4
o TRI-TAC CNCE o GWEN

Several other documents addressing software WBSs were also
reviewed, including (Boehm 1981), (Reiffer 1982), and two documents

related to AFSC Space Division programs, (SSCAG 1980) and (Long and

Toutant 1981).

22

4,-

" " -. -.

%

KEY WBS ISSUES ADDRESSED

Several key issues had to be addressed within Draft MIL-STD-X.
The following paragraphs discuss these issues and the rationale

behind the decisions made by the developers. Others reviewing this
report with different backgrounds and experiences may disagree with
some of the decisions made. We welcome differing points of view and
in Section 4 invite readers to comment using the questionnaire

provided as Attachment 3.

Issue 1: Structure of Software Components in the CWBS

MIL-STD-881A provides insufficient guidance for identifying
software components in the CWBS. In fact, the only mentior of
software is F- "Computer Programs" element at level 3 under "Prime

Fission Equipment" in Appendix B of MIL-STD-881A. Such a structure
does not afford adequate control over software development on
defense programs for which software is increasingly becoming the
major cost contributor and the priwary area of technical risk.

In the absence of specific guidance from MIL-STD-881A, ESD

program offices and contractors have taken it upon themselves to
define software WBSs. This has normally involved many iterations
and has met with varying degrees of success. The WBSs observed on
ESD programs appear to map into three basic structures: (1) prime
mission software as a separate level 2 CWBS element with lower level
breakdowns into software components, (2) software subsystems
identified at level 3 under Prime Mission Equipment in parallel with
corresponding hardware subsystems, and (3) as a single level 3
element under Prime Mission Equipment with a lower level breakdown
into CPCIs.

It became obvious that it would be inappropriate to attempt to
% legislate one structure to fit the needs of all programs.

Therefore, MIL-STD-X acknowledges the three generic structures
discussed above and provides guidelines for selecting the one, or
combination, which best meets the needs of the program.

Issue 2: Level of Software CWBS Elements

Most ESD programs reviewed partition the software system at

successive levels into: (a) software subsystems, (b) computer
program configuration items (CPCIs), and (c) computer program
components (CPCs). On some defense programs, the CPCIs were
e:tremely large, encompassing 50K lines of code or more. Observed
CPCs ranged in size from approximately 500 to 10K lines of code.
Because of this, it was decided to extend the MIL-STD-X requirements

down to and including the CPC level. It is recognized that this may

23

--------------------------------,
.. . . .

, ,,', . ,,,,, .'. I ° , , .:..,. ,.", '.". "-'. .-... '. ,.-.. . .'-.. . . .'..-.. . .rS. ".;'." ." , ";'" "" " "'

* ~. * . -- -

be appropriate for some programs but too fine grained for others.

Therefore, to meet the needs of different programs, different levels

of application of MIL-STD-X are expected. The final determination
should be made by the procuring agency, based on the size,

structure, and complexity of the particular software system.

Issue 3: CPCI CWBS Elements

CPCIs are the primary software products delivered on a defense

program. They form the basis for functional and performance

allocations, interface control, detailed specification and design,
development, testing and configuration management. Clearly the
CPCIs should be identified in the CWBS. However, it is not so clear
what should constitute a lower level breakdown of a CPCI within the

CWBS. After careful consideration, the following level 5 and 6
breakdown was determined to be appropriate to meet the visibility
requirements of program managers and the data needs of software cost
estimators.

Level 4 Level 5 Level 6

CPCIn

Requirements Definition

(Development Specif ication)

Design (Product Specification)

CPCn.

CPCn.l Design
CPCn.1 Code & Debug

CPCn.l Integration & Checkout

''4i

CPCn. i

CPCn.i Design

CPCn.i Code & Debug

CPCn.i Integration & Checkout

Integration & Informal Test

Data Generation/Conversion

Qualification Tests

24

". 4 "

Level 4 Level 5 Level 6

Documentation

System Test Support &
Initial Maintenance

This structure provides a comprehensive, product-oriented
breakdown of a CPCI, which also corresponds to the phasing of the
CPCI development. It provides consistent data collection across
acquisition programs by ensuring that all activities related to the
CPCI are accounted for under the CPCI. It also provides a basis for
measuring the status of the CPCI development during the system
acquisition, as well as a basis for future estimation of CPCI
development schedule.

Issue 4: System-Level Software Activity

CPCI development accounts for only a fraction of the
software-related activity on a defense program. For exaple,
software is also a major consideration of such system level
activities as System Engineering and System Test & Evaluation. The
original SARE DID and the prior version of MIL-STD-X attempted to
separate software-related from hardware-related activities at the
system level. This was found to be artificial in practice and has
been excluded from the current version of Draft MIL-STD-X.

SUMMARY OF DRAFT MIL-STD-X REQUIREMENTS

The following is a synopsis of the requirements of Draft
MIL-STD-X. Each section summarizes the requirewents of the
corresponding Draft MIL-STD-X paragraph and, in some cases, briefly
discusses why the requirement is as it is.

Scope of Application (Parafraph 1)

Two criteria are used to determine whether Draft MIL-STD-X
should be applied to a defense system acquisition program:

a. MIL-STD-881A should be applied to the program, and

b. There should be a "program-unique requirement" for
identification of software products in the CWBS.

25

I , -,', . 5'. " . -. U " ' " -. ,.-.. ..' . .-. , -*- , - ,.-. ,. ,. . . -,'-.,. .,*•

-- - - T 7 7 .. 7-77

'4

N The former is necessary because there would be little sense in
applying MIL-STD-X to a program that does not require a CWBS in
general. The latter appeals to an intentional loophole in
MIL-STD-881A that allows modification of its requirements to meet
program-unique requirements. Given the present state of
MIL-STD-881A, nearly any defense program that includes software
acquisition has a program-unique need to deviate from its exact
requirements. MIL-STD-X provides a logical organization for such
deviation.

Two criteria are used to determine if a program-unique
requirement exists: (a) if the software contributes more thar five
percent to the total development cost of the system, or (b) software
represents an area of major technical risk to the program. The
former mandates use of MIL-STD-X on programs with significant
software development effort. The latter allows its use on programs
where the software effort is small in proportion to the total system
cost but still represents critical technical risk.

Software Definitions (Paragraph 3)

There is currently no single authority for definitions of
software terminology used in the various MIL-STDs that apply to
software development on defense systems. An effort has been made to
establish a set of definitions that can be applied to all types of
software development. The definitions presented in Paragraph 3 of
Draft HIL-STD-X have been scrutinized by a limited number of
government and industry representatives and appear to be
appropriate.

General Requirements (_Pa raZaph .4)

MIL-STD-881A establishes the requirements far WBSs on defense
programs. Draft MIL-STD-X builds on MIL-STD-881A so as not toduplicate its requirements or definitions. Paragraph 4 establishes

this relationship.

Detailed Requirements (Paragraph 52

The detailed requirements in Paragraph 5 of Draft MIL-STD-X
address the extension of the CWBS. Six areas are addressed:

a. Placement of software components in the CWBS

b. Integration of lower-level components to form higher-level
components

c. Extending the CWBS with CPCI elements

26

-4. - ' ,' ,("" - ' .;"- - ' ."-' ' " " '"- " " "
"

"""""- -""-"""' -" " '-,"- . -" ,"-. .

Sn, . 1 . . . ,, -P_ S S -.--- " - -'.- . -'-" "-' -"A P "

d. Tailoring the CPCI elements to apply to various types of
CPCI acquisitions, including purchases, modifications,
conversions, and subcontractor developments

e. Subcontract WBSs, and

f. Software development and maintenance facilities.

Paragraph 5 is essentially a mechanical procedure for extending
the CWBS with software elements. The requirements are self-
explanatory.

Draft HIL-STD-X Appendix A

Appendix A of Draft MIL-STD-X provides three model CWBSs to
illustrate the concepts of MIL-STD-X. Each model is a generic CWBS,

* developed in accordance with 1NIL-STD-881A, which corresponds to one
of the alternative methods of identifying software components

*discussed in NIL-STD-X Paragraph 5.1.

Draft MIL-STD-X Appendix B

Appendix B of Draft MIL-STD-X establishes and defines level 5
and 6 CWBS elements that break down the CPCIs. The contractor is
instructed in MIL-STD-X Paragraph 5.3 to extend the CPCIs in the
CWBS with the elements in Appendix B. The intent of Appendix B is
to provide well-defined, well-structured cost reporting to support
future estimation. The CWBS elements defined in Appendix B were
determined to best meet these objectives.

27

S S

SECTION 3

OVERVIEW OF DRAFT SALE DATA ITEM DESCRIPrIO(*

IUbY A DID?

All data to be reported by a contractor must be specified in a
data item description (DID) referenced in the contract data
requirements list (CDRL). Alternatives to creating a new DID would
be to gather the data from government personnel monitoring
acquisitions and/or attempt to glean the information from other
deliverable data items.

Both alternatives would make the information secondhand,
increasing the potential for error. Government monitors would wiste
considerable time reading superfluous material in order to collect
the pertinent information. It would also be nearly impossible to
maintain consistent definitions. In the end the monitor would
likely confer with the contractor anyway to enfsure the information
is correct.

The most cost-effective way to collect quality data is to

specify precisely the needed information in a DID and collect it
directly from the software developers.

ORIGIN OF THE SARE DID REQUIREMENTS

The Draft SARE DID presented in Attachment 2 has been derived
from the original SARE DID, a later revision of a subset of the
origiral DID, experiences durin& negotiations with the pilot test
contractor, and a recent review of popular software cost models and
data collection forms used on other software data collection

efforts.

Software cost models reviewed during various stages of SARE
development include:

o Aron o COCOMO
o Boeing Computer Services o SLIM
o Doty o PRICE S
o Walston & Felix o Wolverton

The data collection forms reviewed include the NASA Software

Engineering Laboratory (SEL) Data Collection Forms (DACS-A) and the
DACS Productivity Data Collection Forms (DACS-B), both of which are
distributed by the Data & Analysis Center for Software.

28

'p _ , ,, , % %,',.' ,, ' ., -,,,, -. ,, , . .•. . . .•. . ,-. ,

4' .

The NASA SEL forms, the COCOMO model (Bcehm 1981), and the Doty
model (Herd et al. 1977) were particularly useful and were used
extensively to define data items in the Draft SARE DID.

KEY ISSUES ADDRESSED

The key issues addressed while developing the SARE DID and the
rationale behind the decisions made are discussed below. As with
Draft MIL-STD-X, we welcome differing points of view, and in Section
4 solicit comments using the questionnaire provided as Attachment 3.

Issue 1: What to Ask

In order to calibrate software cost models, the collected data
must as a minimum include the software attributes used by the models
to estimate cost and schedule. The database must also provide cost
(that is, manhours and dollars) and the distribution of cost over
time (that is, schedule and manloading profiles).

The Draft SARE DID contains five forms for collecting
information on the project. The first three forms collect
characteristics of the software system as a whole, the CPCIs, and
the CPCs, respectively. The fourth form collects information about
the size of the computer databases assembled by the contractor. The
data items selected either correspond directly to software cost
model attributes or are used to derive cost model attributes. The
fifth form collects mon-hour and dollar expenditures for software
WBS elements defined in Draft MIL-STD-X.

Issue 2: Levels of Data Collection

The levels of data collection should correspond to the levels
of software components in the software hierarchy. As mentioned
above, the data collection forms contained in the Draft SARE DID
collect information about the software system as a whole, each CPCI
and each CPC.

Issue 3: Reor in Fre..u nc

The database should provide a history of changes in the
software attributes (for example, growth in software size,
increased timing and storage criticality, number and relative size
of engineering change proposals). This information is useful for
explaining, after the fact, why actual costs differed from initial
estimates. It also allows independent generation of "revised
estimate at completion" during the program.

29

A

4i4 . ,. .

As discussed in the SARE Concept of Operation in Section 1, the

reporting frequency of the SARE DID will be specified in the CDRL.
The recommended frequency for the various SARE DID forms is
presented in the model CDRI. entry in Figure 1-4. The actual
reporting requirements may vary by program. Information reported
early in the program will be estimated and replaced in later reports
with actual values as they become known.

SUMMARY OF THE SARE DID REQUIREMENTS

The Draft SARE DID presented in Attachment 2 contains five
forms for collecting information about software development on
defense system acquisition programs. The items are defined in the

-- instruction sheets that accompany the forms.

The first three forms, the Project Summary, CPCI Summary, end

CPC Summary, collect cost driver attributes for those three levels
of the software hierarchy. The fourth forr, the Database Summary,
collects irformation about the computer databases. The fifth form,
the Resource Expenditure Summary, is used to report expended
man-hours, labor dollars, and total dollars for software CWBS
elements established in accordance with Draft MIL-STD-X.

.e3

IJ.

o30
-,S - . . . ,. , .. -' . . ' - . , - . . - . . o , . - ,.., - .,, , - . ,. - - ,. - . - . ' - - , ,

SECTION 4

SARE INDUSTRY/GOVERNMENT REVIEW

, PLANS FOR A TWO-PHASE INDUSTRY/GOVERNENT REVIEW

The next steps in the SARE development are to evaluate the
methodology during trial applications and disseminate the draft
documents for widespread review by government, industry, and other
interested organizations.

The industry/government review is planned in two phases. Phase

I, which occurred during the Spring of 1983, was limited to a select
set of government and industry organizations. The results of that
review are summarized in the latter part of this section.

Phase II will be accomplished through general dissemination of
this report. Comments on the proposed SARE documents are welcomed
from all sectors of industry, government, and academia. A
questionnaire has been included as Attachment 3 of this report to
assist reviewers in providing their comments.

All readers are encouraged to participate. To do so, please
return the completed questionnaire, and any additional comments, by
1 April 1984 to:

Headquarters, Electronic Systems Division
Director of Cost Analysis
Management and Information Systems Division
Hanscom Air Force Base, MA 01731
Attention: Capt. J. P. Dean, ESD/ACCE

Questions should be directed to Capt. Joseph P. Dean, ESD/ACCE,
at (617) 861-5223 or AV 478-5223 or by mail at the above address.

Contributions to this effort will be greatly appreciated.

SUMMARY OF THE LIMITED PHASE I REVIEW

A preliminary industry/government review of the Draft MIL-STD-X
was conducted during Spring 1983. The review was limited to a
select set of industry and government representatives. The Draft
SARE DID was not included in the review.

31

9

%*

4l

Thirty-five copies of Draft MIL-STD-X were distributed, and
comments were received from thirteen individuals and organizations.
The response was generally favorable. All specific comments dealing
with phraseology and detailed requirements were considered, and
those accepted have been incorporated into the current version of
Draft MIL-STD-X.

General comments relating to the overall inplementatiot, of
NIL-STD-X are summarized below.

Incorporation of MIL-STD-X into MIL-STD-881A

Reviewers were given a choice of recommending that Draft
MIL-STD-X become a stand-alone MIL-STD, be incorporated into a
revision of MIL-STD-881A, be used as guidance only, or not be
pursued at all. The consensus was that Draft HIL-STD-X should be
incorporated into a revision of MIL-STD-881A. Reviewers almost
unanimously agreed that Draft MIL-STD-X is indeed needed and that
consolidation with MIL-STD-881A would clarify the relaticnsbip br-C
order of precedence.

MIL-STD-X was drafted as a stand-alone YIL-STD for two reasons:
(1) to allow trial applications on ESD programs while it is being
considered for widespread use, and (2) to simplify its incorporation
into MIL-STD-881A. The ultimate form and content will be decided by
the appropriate authority at some future date.

Definitions of Software Components

There was some confusion regarding the definitions of software
components in Paragraph 3 of Draft MIL-STD-X. The current
4efinitions were developed in response to the questions and
suggestions of reviewers.

On defense programs, three types of software have to be
addressed:

1. Prime Hissiun Software - all software that executes in the
target computers during any mode of system operation.

2. Support Software - software that does not execute during
system operation but which supports off-line test and
maintenance of the defense system.

3. Other Software - software that is not a part of the defense
system but is developed or acquired for such ancillary
functions such as training, system engineering, and
development testing.

32

4,/'

,.. ,=. a aa. *, - a', ." ,,_,,,,.-,-. -',o ,', .,' .'.- .. ,..'... .'.. *. ".-% . -.. a . . a ~ ~ -.

In trying to identify these types of software in the CWBS,
confusion ariuts over such itevis as operating systems, database
management systems, and diagnostics programs, which can fall under
either Prime Mission Software or Support Software depending on
whether or not the software operates in the prime mission computers
during system operation. An attempt has been made to clarify the
definitions in the current version of Draft MIL-STD-X.

MIL-STD-SDS

Reviewers recommended that the Joint Logistics Commanders' new
MIL-STD-SDS, "Proposed Military Standard on Defense System Software
Development," associated DIDs, and proposed revisions to existing
MIL-STDs be reviewed to ensure consistency. MIL-STD-SDS has been
reviewed and discussions held with the contractor coordinating its
revision.

It is the author's opinion that only minor changes to MIL-STD-X
will be needed if MIL-STD-SDS is approved. The changes primarily
involve terminology. Since MIL-STD-SDS is still in the review
process and has not yet converged to its final form, the decision
was made to make Draft HIL-STD-X consistent with the current MIL-STD
process of software development. Adjustments car be made if ard
when VIL-STD-SDS is approved.

t 3

.- I

'""" 33

2"......

W7 .7 w.-. Z -

SECTION 5

CONCLUSIONS AND RECOIMENDATIONS

CONCLUSIONS

The major conclusions of this study are: (1) standard software

data collection on defense programs is needed to elivinate the
uncertainty in software cost estimation that is attributable to poor
data, and (2) standard software data collection on defense programs
must be fully integrated with the contractors' cost/schedule control
systems.

A necessary corollary to this position is that discipline is

needed in establishing and maintaining software WBSs on defense
programs. This discipline is currently lacking in YIL-STD-881A.

The cost of implementing SARE data collection should not be

prohibitive. Software data collection comparable to thst which will
be implemented by the SARE DID is now commonplace among major
defense contractors. It is generally recognized that a quality
database of this type is invaluable for preparing cost estimates,
measuring performance, and evaluating the impact of new technologies
and methodologies on software productivity.

Furthermore, because of its absence in MIL-STD-881A, software
has either been ignored completely or poorly represented in CWBSs.
The result has been needless iteration of CWBSs and wasted effort
and expense. Draft l!IL-STD-X simply adds structure to what has been

a haphazard practice in the past.

The SARE methodology proposes contractual documents that can
ultimately make large amounts of quality data available to the
government and industry. The benefits can be increased
understanding of the software development process, and increased
realism in defense budgets, resulting in increased realism in
contract negotiations and contract awards. Only the DoD, with the
cooperation of industry, is in the position to effect such
large-scale data collection.

The SARE methodology is not a panacea for software cost

estimation deficiencies. However, it c(an provide the basis for
discussion between government and industry needed to arrive at a
mutually beneficial approach to software data collection.

34

-.I-

I" -" . "-- " ""- -" "-,", "-" " " - " "- • ". " "- . " - ' - . -" .'." -, . '. - 2-

7..

RECOM1eNDATIONS

The SARE methodology requires testing and exposure. Draft

MIL-STD-X and the SARE DID should be applied to ESD programs on a

trial basis beginning in FY84. The documents should also be

subjected to widespread industry/government review during FY84
through public dissemination of this report.

ESD/ACC should consolidate comments from reviewers, together
with initial experiences on trial applications, and report the

results to Headquarters USAF and the Joint Services. FSr/ACC sbould
include in the report a cost/benefit aralysis of SARE date
collection and make a recommendation regarding DoD-wide
implementation.

A recommended timetable for this activity is provided below:

Oct. 1983 Begin test applications on ESD programs

April 1984 Comments due from reviewers

Sept. 1984 ESD/ACC recommendation to Hq USAF and the

Joint Services regarding wide-spread
implementation of SARE data collection

,35

i

%• , 35

i'

U .

LIST OF REFERENCES

(Aron 1969). J. D. Aron, "Estimatin& Resources for Large

Programming Systems," Software EngyineerIng Technicgs, NATO,
Brussels, Belgium, 1969.

(Black et al. 1977). R. K. D. Black, R. P. Curnow, R. Katz, ar, l.

D. Cray, "BCS Software Production rata," RADC-TR-77-116,
Boeing Computer Services, Inc., March 1977, DTIC No. AD
A039852.

(Boehm 1981). B. W. Boehm, Software Engineering Economics,
Englewood Cliffs, N. J.: Prentice Hall, Inc., 1981.

(Bourdon and Duquette 1978). G. A. Bourdon and J. A. Duquette, "A
Computerized Model for Estimating Software Life Cycle Costs
(Model Concept)," ESD-TR-77-253, Vol. I., Hanscom Air Force
Base, Mass.: AFSC Electronic System Division, April 197F,

DTIC No. AD A053937.

(DACS-A). "NASA/SEI. Data Collection Forms," Griffiss Air Force
Base, N. Y.: Illinois Institute of Technology (IT, Research

Institute for the Data and Analysis Center for Software, Rome
Air Development Center, undated.

(DACS-B). "DACS Productivity Data Collection Forms," Griffiss Air

Force Base, N. Y.: Illinois Institute of Technology (IT)
Research Institute for the Data and Analysis and Center for
Software, Rome Air Development Center, undated.

(DACS 1982). "The DACS Data Compendium," Griffiss Air Force Base,

N. Y.: Illinois Institute of Technology (lIT) Research
Institute for the Data and Analysis Center for Software, Rome

Air Development Center, December 1982.

(Fleishman 1966). T. Fleishman, "Current Results from the Analysis

of Cost Data for Computer Programming," System Development
Corporation, August 1966.

(Freiman and Park 1979). F. R. Freiman and R. E. Park, "PRICE

Software Model - Version 3: An Overview," Proceedings.
IEEE-PINY Workrhop on Quantitative Software Models, IEEE

Catalog No. TH0067-9, October 1979.

3

,i37

PR

(Glore 1977). J. B. Glore, "Software Acquisition Management

Guidebook: Life Cycle Events," ESD-TR-77-22, Contract
Fl9628-77-C-0001, Bedford, Mass.: The MITRE Corp., March
1977, DTIC No. AD A037115.

(Glore and Bjerstedt 1977). J. B. Glore and W. P. Bjerstedt,
"Software Acquisition Management Guidebook: Statement of Work

Preparation," ESD-TR-77-16, Contract F19628-77-C-0001,
Bedford, Mass.: The MITRE Corp., January 1977, DTIC No. AD
A035924.

(Herd et al. 1977). J. R. Herd, J. N. Postak, W. E. Russel, and K.

R. Stewart, "Cost Estimation Study - Study Result-,"
RADC-TR-77-220, Vol. 1, Rockville, MD: Doty Associates, Inc.,
June 1977, DTIC No. AD A042264.

(Long and Toutant 1981). L. G. Long and R. P. Toutant, "Air Force

Satellite Control Facility Cost Manual," Aerospace Report 17o.
TCR-0082(2420-04)-I, Los Angeles, Calif.: The Aerosp.ce
Corp., October 1981.

(Nelson 1966). E. D. Nelson, "Management Handbook for the
Estimation of Computer Programming Costs, "AD-A648750, Systems
Development Corp., October 1966.

(Putnam 1978). L. H. Putnam, "A General Empirical Solution to the

Macro Software Sizing and Estimating Problem," IEEE
Transactions on Software Engineering, July 1978.

(Reiffer 1982). D. J. Reiffer, "What Software People Do: A Work
Breakdown Structure," RCI-TR-013, Torrance, Calif.: Reiffer

Consultants, Inc., February 1982.

(SSCAG 1980). "Standard Work Breakdown Structure for Space
Systeus," unpublished report, Space Systems Cost Anal.,sis

Group, May 1980.

(Tecolote 1974). "A Provisional Model for Estimating Computer

Program Development Costs," TM-7/Rev. 1, Tecolote Research,
Inc., December 1974.

(Walston and Felix 1977). C. E. Walston and C. P. Felix, "A Method

of Programming Measurement and Estimation," IBM Systems

Journal, 16, 1, 1977.

(Wolverton 1974). R. W. Wolverton, "The Cost of Developing
Large-Scale Software," IEEE Transqctions on C9pputers, June

1984.

38

,,,.. ,%.,,.%,, ,,',,, -,.. -, .-.. .. .-.'.. . -. -. . . - . , ,".. .. :,

a, s._7

GOVERNMENT DOCUMENTS*

AFLCP/AFSCP 173-5, Cost/Schedule Control SLstems Criterjia Jin-t
Inpjeuentation Guide

AFLCP/AFSCP 173-6, Cost Schedule Control S.ysttems Criteria Joint
Surveillance Guide

DI-F-6000C, Cost Performance Report

DI-F-6010, Cost/Schedule Status Report

DoDD 5000.1, Major System Acquisitions

DoDI 7000.1, Resource Management Systems for the Department of

Defense

DoDI 7000.2, Performance Measurement for Selected Acqu-isitions

DoDI 7000.10, Contract Cost Performancea Funds Status and
Cost/Schedule Status Reports

DoDI 7000.11, Contractor Cost Data RevPo!tZir,&

FIL-STD-483, Confi uratior. Fanyaement Pract ices for jystgers
E~j2ment Munitions and Computer Programs

MIL-STD-490, Specification Practices

MIL-STD-881A, Work Breakdown Structures for Defense Materiel Items

MIL-STD-1679(NAVY), Weapon System Software Development

NIL-STD-1521A, Technical Reviews and Audits for S§_?pt~mss Eiippent,
Munitions and Computer P rorams

MIL-STD-SDS, Joint Logistics Commanders, "Proposed Military Standard
on Defense System Software Developvent," urcfficial working

taper, 15 Ppril 19F2.

kCopies of government documents are available from the Naval

Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA

19120).

a'3

*" 39

44

... .

GLOSSARY

AFSC Air Force Systems Command

CDRL Contract Data Requirements List

COCOMO Constructive Cost Model

CPC Computer Program Component

CPCI Computer Program Configuration Item,

C/SCSC Cost/Schedule Control Systems Criteria

CUBS Contract Work Breakdown Structure

DACS Data and Analysis Center for Software

DID Data Item Description

DoD Department of Defense

ESD Electronic Systems Division

JLC Joint Logistics Commanders

-IL-STD Military Standard

4.. AISA SEL NASA Software Engineering Laboratory

RFP Request for Proposal

SARE Software Acquisition Resource Expenditure

SDC Systems Development Corporation

SOw Statement of Work

WBS Work Breakdown Structure

-4

MIL-STD-X
July 1983

ATTACHMENT 1

DRAFT MILITARY STANDARD

-' *SOFTWARE WORK BREAKDOWN STRUCTURES FOR

DEFENSE SYSTEM ACQUISITIONS

'4

41

qj ,. ' -m. . . , .. .- : - ' .. : " - - ,' , : _ , . " . . - " - ,

MIL-STD-X

DEPARTMENT OF DEFENSE

WASHINGTON D. C. 20301

SOFTWARE WORK BREAKDOWN STRUCTURES FOR DEFENSE SYSTEM ACQUISITIONS

MIL-STD-X

1. Mandatory application. The work breakdown structure requirements
established by this standard apply to all defense system acquisition
programs (a) to which MIL-STD-881A is applied, and (b) for which there
exists a program-unique requirement for identification of software products
in the work breakdown structure. Such a program requirement exists if:

a. Five percent or more of the estimated research, development, test
and evaluation (RDT&E) cost of the system is for software acquisition,
and/or

b. The DoD component has determined that there is significant
technical risk in the program associated with the software development.

2. Optional application. This military standard is optional for use on
smaller programs to which MIL-STD-881A is not formally applied, but which
are considered software intensive and/or in which there is major technical
risk associated with the software.

3. Recommended corrections, additions, or deletions should be addressed
to:

Headquarters, Electronic Systems Division
Director of Cost Analysis
Management and Information Systems Division
Hanscom Air Force Base, MA 01731

L.41

i

(42)

.4

14

FOREWORD

1. The work breakdown structure (WBS) elements defined in this standard
extend the requirements of MIL-STD-881A in the area of software. The
standard is to be applied in conjunction with MIL-STD-881A to defense
system acquisition programs on which a significant portion of the estimated
development cost is for software acquisition. The principles of this
standard may also be applied on smaller acquisition programs to which
MIL-STD-881A is not formally applied but which are considered software

critical.

2. The software WBS elements defined in this standard provide a uniform

framework for:

a. Planning, budgeting, and allocating responsibilities within

government organizations responsible for the acquisition of defense systems
and contractor organizations responsible for their development.

b. Uniform reporting of progress and status on software efforts
throughout defense system acquisition programs.

c. Consistent accumulation of resource expenditure data across defense
programs that can be used to calibrate and validate software cost
estimation models and methods.

3. Implementation of this standard will benefit government and industry
program managers by providing a uniform structure for comparing proposals,
measuring performance, and facilitating problem detection and analysis for
the software portion of a defense system acquisition. It will also benefit
the government and industry in general by creating a uniform software data
base which will result in improved software cost estimates. This, in turn,
will result in more realistic program budgeting, proposal evaluations, and
contract negotiations.

(43)

• "p% " . . % ° . . , - , - • ' . " . .

TABLE OF CONTENTS

Section Page

LIST OF ILLUSTRATIONS iv

1. SCOPE
4!

1.1 Purpose 1
1.2 Application 1

1.2.1 Mandatory Application 1
1.2.2 Optional Application 1

2. REFERENCED DOCUMENTS 1

3. DEFINITIONS 2

3.1 General 2
3.2 Software components 2
3.2.1 Prime mission software (software system) 2
3.2.2 Software subsystem 2
3.2.3 Computer program configuration item (CPCI) 2
3.2.4 Computer program component (CPC) 3
3.3 Support software 3
3.4 Software not included in prime mission software 3

4. GENERAL REQUIREMENTS 3

4.1 Extension of MIL-STD-881A 3

5. DETAILED REQUIREMENTS 3

5.1 Placement of software components in the work
breakdown structure 3

5.1.1 Prime mission software 4
5.1.1.1 Prime mission software as a separate element at level 2 4
5.1.1.2 Software subsystems in parallel with hardware subsystems 4
5.1.1.3 Software as a single element under prime mission equipment 4
5.1.2 Support software 4
5.1.3 Microcode and firmware 8

5.1.4 Common software 8

5.1.5 Software not included in prime mission software 8
5.2 Software system/subsystem analysis, design,

integration and test 8
5.2.1 Software system (subsystem) analysis and design 8
5.2.2 Software system (subsystem) integration and informal test 8
5.3 Extended CPCI contract work breakdown structure elements 9

iii

(45)

. ..- * % .t. * -, .,,,* ,

TABLE OF CONTENTS (Concluded)

Section Page

5.4 Tailored use of Appendix B 9
5.4.1 Addition of WBS elements 9
5.4.2 Exclusion of WBS elements 9
5.4.3 WBS elements for CPCIs that are not entirely new software

development 9
5.4.3.1 Purchased software 9
5.4.3.2 Modification/conversion of existing software 9
5.4.3.3 Subcontractor developed software 11
5.5 Subcontract work breakdown structures 11
5.6 Software development and maintenance facilities 11

6. MISCELLANEOUS 11

6.1 Financial Data Reporting 11

APPENDIX A - IDENTIFICATION OF SOFTWARE COMPONENTS IN A
WORK BREAKDOWN STRUCTURE 13

APPENDIX B - WORK BREAKDOWN STRUCTURE ELEMENTS FOR COMPUTER
PROGRAM CONFIGURATION ITEM DEVELOPMENT 23

d" LIST OF ILLUSTRATIONS

Figure Page

1. Prime Mission Software as a Separate Element at Level 2 5

2. Software Subsystems in Parallel with Hardware Subsystems 6

3. Software as a Single Element Under Prime Mission Equipment 7

4. CPCI Work Breakdown Structure Elements 10

iv

(46)

DRAFT MILITARY STANDARD

SOFTWARE WORK BREAKDOWN STRUCTURES FOR

DEFENSE SYSTEM ACQUISITIONS

1. SCOPE

1.1 Purpose. This standard establishes criteria governing the preparation
of software work breakdown structure elements for use in conjunction with
MIL-STD-881A during the acquisition of selected defense materiel items.

1.2 Application.

1.2.1 Mandatory application. The work breakdown structure requirements
established by this standard apply to all defense system acquisition
programs (a) to which MIL-STD-881A is applied, and (b) for which there
exists a program-unique requirement for identification of software products
in the work breakdown structure. Such a program requirement exists if:

a. Five percent or more of the estimated research, development, test
and evaluation (RDT&E) cost of the system is for software acquisition,
and/or

b. The DoD component has determined that there is significant
technical risk in the program associated with the software development.

1.2.2 Optional application. This military standard is optional for use on
smaller programs to which MIL-STD-881A is not formally applied, but which
are considered software intensive and/or in which there is major technical
risk associated with the software.

2. REFERENCED DOCUMENTS

2.1 The following documents of the issue in effect on the date of
invitation for bids or request for proposal form a part of this standard to
the extent specified herein.

MIL-STD-881A, Work Breakdown Structures for Defense Materiel Items

MIL-STD-483, Configuration Management Practices for Systems, Equipment,
Munitions, and Computer Programs

DI-F-6000C, Cost Performance Report

DI-F-6010, Cost/Schedule Status Report

(

(47)

I

".4

DI-F-XXX, Software Acquisition Resource Expenditure (SARE) Data
Collection

2.2 In cases of conflict, this standard takes precedence, unless otherwise

stated herein.

3. DEFINITIONS

3.1 General. Terms shall be as defined in MIL-STD-881A, MIL-STD-483, this
standard, and the appendixes of this standard.

3.2 Software components. Software component is a generic term that refers
to software at any level of the software hierarchy. The software
components defined in the following subparagraphs are addressed by this
standard. The terms used to describe the software components that apply to
a particular defense system acquisition program may differ from those
defined herein. However, the principles of this standard still apply.

3.2.1 Prime mission software (software system). The aggregate of all
computer programs and databases that operate as part of the defense system.
This includes applications software developed specifically to provide a
prime mission function of the defense system and support software, such as
off-the-shelf operating systems, data base management systems, on-line
diagnostics, etc., which execute in the target computer(s) during any mode
of system operation. The prime mission software is also referred to as the
i"software system" in this standard. The prime mission software may be

partitioned directly into computer program configuration items or it may be
partitioned into software subsystems which are in turn partitioned into
computer program configuration items.

Note: The term "system segment" is not used in this standard. A system
segment, as defined in MIL-STD-483, may refer to a subdivision of a defense
system which has been designated for separate procurement. Under this
interpretation, the same principles of this standard shall apply to system

segements as to a software system as a whole. Under a broader
interpretation of MIL-STD-483, a system segment may correspond to a
subsystem as defined below.

3.2.2 Software subsystem. A subdivision of the software system which
operates as an integral whole and provides a major function of the system.
A software subsystem is comprised of two or more computer program
configuration items. A software subsystem may also be a collection of
computer program configuration items that are grouped together in a common
classification for program management purposes (for example, support

software).

3.2.3 Computer program configuration item (CPCI). An aggregation of
software, or any of its discrete portions which satisfies an end use
function and has been designated by the government for configuration

management. CPCIs are the major software products of a system acquisition.
The term "CPCI" is formally defined in MIL-STD-483. In case of conflict,
MIL-STD-483 takes precedence over this paragraph.

2

(48)

q-77-,

%

3.2.4 Computer program component (CPC). A functionally or logically
distinct part of a CPCI distinguished for convenience in designing and
specifying a complex CPCI as an assembly of subordinate elements. The term
"CPC" is formally defined in MIL-STD-483. In case of conflict, MIL-STD-483
takes precedence over this paragraph.

3.3 Support software. Two types of support software are acquired on

defense system acquisition programs: (a) support software which operates
as part of the prime mission software (that is, operating systems, database
management systems, on-line diagnostic programs, etc. which execute during
system operation), and (b) support software which does not operate as part

"-1 of the defense system but which is used off-line to support the
development, test, and maintenance of the prime mission software (that is,

operating systems, compilers, linkers, loaders, simulators, debuggers,
off-line diagnostic and utility programs, etc. which are used to develop
the prime mission software during the system development and are delivered
to maintain the system during operation, normally as part of a software
development/maintenance facility). Support software which executes during
any mode of system operation is considered prime mission software.

3.4 Software not included in prime mission software. Deliverable and
non-deliverable software that does not operate as part of the defense
system but supports a specific activity during the system acquisition phase
(for example, communication network simulator used to conduct system

* engineering analyses, system test support software, program support
libraries) or are acquired as part of such deliverable, non-prime-mission

items as training, support equipment, or maintenance facilities.

4. GENERAL REQUIREMENTS

4.1 Extension of MIL-STD-881A. MIL-STD-881A establishes criteria for the
* preparation and use of summary, project summary, contract, and extended

contract work breakdown structures (WBS) by DoD components and contractors.
This standard extends the requirements of MIL-STD-881A as follows: (a) the
DoD component will identify the software components in the project summary
and contract WBS down to the level at which the software components have
been defined prior to the release of the invitation for bids or request for
proposal, (b) the DoD component will negotiate the placement of the
software components in the contract WBS with the contractor, (c) the
contractor shall then extend the contract WBS during the program, as the
software system is defined in greater detail, to include the contract WBS

-4elements established in this standard.

5. DETAILED REQUIREMENTS

5.1 Placement of software components in the contract work breakdown

structure. The placement of software components in the contract WBS shall

correspond to the configuration of the prime mission software in the

defense system.

.3

(49)

-. --.-- -°-.- - . .,

5.1.1 Prime mission software. There are three basic ways the prime

mission software may be identified in the contract WBS: (a) as a separate

level 2 element with lower level breakdowns into software subsystems and
CPCIs, (b) as software subsystems at level 3 under prime mission equipment
in parallel with corresponding hardware subsystems, or (c) as a single
level 3 element under prime mission equipment with a level 4 breakdown into
CPCIs. The DoD component will select the structure, or combination of
structures, that best meets the requirements of the program, according to
the guidelines in the following subparagraphs. The selection will be based
on systems engineering analyses and negotiated with the contractor. The
overall objective is to ensure that the selection of software subsystems
and CPCIs corresponds to the functional breakdown of software components in
the defense system. Each contract WBS discussed below is illustrated in
Appendix A in the context of a generic WBS prepared in accordance with
MIL-STD-881A.

5.1.1.1 Prime mission software as a separate element at level 2. Prime
mission software should be identified as a separate element at level 2 of
the contract WBS with a lower level breakdown into software subsystems and
CPCIs if the software system is large, centralized, and partitioned into
software subsystems that correspond to functional areas but not physically
separate hardware subsystems (an alternative representation for software
subsystems that closely parallel hardware subsystems is provided in

paragraph 5.1.1.2). Figure I depicts a contract WBS in which prime mission
software is identified at level 2. The prime mission software is
partitioned at level 3 into analysis and design, integration and test, and
the software subsystems. Each subsystem is broken down at level 4 into
analysis and design, integration and test, and the CPCIs that comprise the
subsystem.

5.1.1.2 Software subsystems in parallel with hardware subsystems. The
prime mission software should be identified as separate software subsystems
at level 3 under the prime mission equipment in parallel with the
corresponding hardware subsystems if the defense system consists of fully
distributed, independent subsystems that share few common software

functions. Figure 2 depicts such a WBS. Each software subsystem is broken
down at level 4 into analysis and design, integration and test, and the
CPCIs that comprise the subsystem.

5.1.1.3 Software as a sinple element under prime mission equipment. The

prime mission software should be identified as a single element at level 3
under the prime mission equipment with a level 4 breakdown into CPCIs if
the software system is small and consists of individual CPCIs that are not
grouped into software subsystems. Figure 3 depicts such a WBS. The
software element is broken down at level 4 into analysis and design,
integration and test, and the individual CPCIs.

5.1.2 Support Software. Support software which executes in the prime
mission computers during any mode of system operation shall be included in
the contract WBS under prime mission software. Support software which is
delivered to support software maintenance during system operation, but does
not execute during system operation, shall be included under software

4

(50)

,
, . °.

-. -

.' . -. A~* ' . q . - .~-. . -- -. - - -- -..

a w
'p.,>

CC L

CCN

wE w
cc

0.

(1)

ui ca

CAC) 0) U

rr U) = I.

0
'IW

0

co 2, U)

CO))

-4

U) w
uii

-
zz

-4 -

ad ...

W a 4

64

LI-

NV
w

cc

U1
Ww

44

00
US2

CO))

W MW

fen

(52)
4~44I0

I~IA

z 41

00

.4 a E$-Q
0 wLU C Z

4.I-P,

.4-U

0 *!
A$

4..

0
0'

Ch

zL

I.-.

.4-

U)U

444

.4 ~z4
449zi4

-u W

4..4

.4.4

44*L (53
.4en

u .

d.Wu

S~. . * 4 . 4 4 . - 4

.4 .4 - 4 .4 .. -4 ..

development/maintenance facilities, if any. If no software development/
maintenance facilities are to be delivered with the defense system, the
support software shall be included under prime mission software. Figures
1, 2, and 3 demonstrate the placement of support software under prime
mission software in the contract WBS.

5.1.3 Microcode and firmware. Microcode and firmware for which the
detailed design, code, and unit test are not clearly separable from the
corresponding hardware item should be identified in the WBS as part of the
hardware item. If the microcode/firmware is considered software in the
contract and is placed under configuration management as a CPCI, the same
requirements of this standard shall apply as for other CPCIs.

5.1.4 Common software. Software that is cowmon to more than one software

component should be included as part of the component that includes the
software in its specification. Alternatively, if there is a significant
amount of common software, it can be aggregated into a subsystem (or CPCI)
that is labelled as common. This should be done only if the common
software is to be specified and controlled as a separate subsystem (or
CPCI).

5.1.5 Software not included in prime mission software. Software that is
not a part of the prime mission software must be identified under the
contract WBS element it supports. (For example, softwate developed solely
to support system engineering analyses shall be included under System
Engineering; software acquired to support off-line training shall be
included under training.) This includes all such deliverable software
whether or not it is placed under configuration management. This also
includes all non-deliverable, software which in aggregate requires 12 or
more man-months to design, code, test, and document.

5.2 Software system/subsystem analysis, design, integration and test.
Analysis, design, integration and test elements will be used wherever lower
level software components are integrated to form a higher level software
component (for example, CPCIs integrated to form a software subsystem, or
software subsystems integrated to form the software system). Figures 1, 2,
and 3 demonstrate the use of analysis and design and integration and test
elements under the prime mission software and software subsystems.

5.2.1 Software system (subsystem) analysis and desian. The technical
activity undertaken to analyze and define the functional and performance
requirements of the software system (subsystem), and to specify its
architecture/design. This includes all studies, analyses, and
specifications directly associated with the software system (subsystem) as
a whole. This excludes all design and analyses directly associated with
the individual lower level software components (for example, CPCIs).

5.2.2 Software system (subsystem) integration and test. The activity
undertaken to integrate the software subsystems (CPCIs) into the
operational software system (subsystem) and verify its correct operation
prior to system level testing. This includes developing plans and
procedures for integration and test, executing the procedures, analyzing

8

(54)

'.~~ ~ '- " .:, ' , f '- . '.' " - . .'

the results, and preparing reports. This excludes detailed problem
analysis, design, coding, and retesting associated with individual CPCIs;
such activity is included under CPCI system test support and initial
maintenance, defined in Appendix B. This element applies only to software
activities; the integration of the software system with the prime mission
equipment to form the defense system is excluded; this activity is a part

% of prime mission equipment integration and assembly.

5.3 Extended CPCI contract work breakdown structure elements. The

contractor shall extend th. contract WBS below each CPCI with the elements
listed and defined in Appendix B. If the CPCI is identified at a level
higher or lower than level 4, the level of the WBS elements defined in
Appendix B will be adjusted accordingly. Figure 4 illustrates the
breakdown of a CPCI with the elements defined in Appendix B.

5.4 Tailored use of Appendix B. The CPCI elements defined in Appendix B
are required as is, except for the following.

5.4.1 Addition of WBS elements. If there is activity associated with the
acquisition of a CPCI that is not covered by the WBS elements in Appendix

'"" B, one or more new elements, properly defined, shall be added to account
for the additional effort.

• .5.4.2 Exclusion of WBS elements. Those elements defined in Appendix B
that do not apply to the acquisition of the CPCI shall be excluded from the

. extended contract WBS. If the excluded activity later becomes a part of
the acquisition, the contract WBS shall be extended with the applicable
element(s).

5.4.3 WBS elements for CPCIs that are not entirely new software
development. The contract WBS elements in Appendix B may be tailored as
follows to account for CPCIs that are not entirely new software
development. The tailored application of Appendix B in these situations is
subject to the approval of the DoD component.

5.4.3.1 Purchased software. Software purchased outright that requires

less than 12 man-months to specify, select, install, modify, test, and
document need not be extended in the WBS below the CPCI. For purchased
software that requires 12 or more man-months to procure, the applicable WBS
elements and definitions in Appendix B must be used. The names and

definitions of the selected elements should be tailored to reflect the
procurement activities. For example, it may be appropriate to break down a
purchased CPCI in the contract WBS with the following elements:
requirements analysis, package specification, package selection and
purchase, package installation, package modification (if needed),
acceptance test, and documentation.

5.4.3.2 Modification/conversion of existing software. Modification/
conversion of existing software that requires less than 12 man-months to
study, specify, integrate, test, document, and modify/convert existing
documentation need not be extended in the contract WBS below the CPCI. For
software modification/conversion that requires 12 or more man-months to

9

'S (55)

-.

-o ,.

isi
LEVELI I

DEFENSE SYSTEM

*I I]

--i- I Jl

LEVEL 2 SION TRAINING I
EGIIPNENTSOFTWARE

NJ

SOFTWARE SYSTEM SOFTWARE SYSTEM SOFTWA R
EEL ANALSIS A ITEAION A SUBSYSTEM SSYSTEM SEOU
oEn"WT TEST

'..4

SISYSTEM SRYSTE

LEVEL 4 NALyS IS t IN eadovn t us

LEM (- RE6)M-NTS DEFINITION fDEVELOPMENT SPECIFICATIONI
- DESIGN (PROOUCT SPECIFICATION

LEVEL 6CPC DESIGN
CP OEAND DESUG

'ATA GENERATIONJCON VERSION
INTEGRATION & INFORMAL TEST
GIJALIFICATION TESTS

.3, "p o a

STSTEM TEST SUPPORT AND INITIAL MAINTENANCE

'pI

Figure 4. CPCI Work Breakdown Structure Elements

10

(56)

%b
4 i". - , . " . . ' , . - . , ," " " " ' ' " " - ' * - -'

. r.u~ r~ . rr. r.. *,. - rr r rr .r.rit . V .---- * - -. . . - * '.-7. --" . -.' -" ."

complete, the applicable contract WBS elements and definitions from
Appendix B must be used. The names and definitions of the selected
elements should be tailored to reflect the modification/conversion
activities. For example, it may be appropriate to break down a software
modification in the contract WBS with elements identical to those in
Appendix B while it may be appropriate to use the following elements to
break down a software conversion: feasibility analysis, conversion plans
and procedures, conversion implementation, integration and test, and
documentation conversion.

5.4.3.3 Subcontractor developed software. The contract WBS elements and
". definitions in Appendix B that apply to the prime contractor activities

related to subcontractor developed CPCIs must be included in the prime
contract WBS under the respective CPCIs. For example, the prime contractor
may be responsible for preparing the development specification and
conducting qualification testing of each subcontractor developed CPCI.
(The application of this standard to subcontract WBSs is discussed in
paragraph 5.5.)

5.5 Subcontract work breakdown structures. The prime contractor shall
identify in the prime contract WBS those CPCIs which are being acquired
from subcontractors. Each CPCI shall be broken down into the prime
contractor products, per paragraph 5.4.3.3, and a summary element for the
subcontractor effort. The prime contractor may negotiate any subcontract
WBS providing it identifies the CPCIs at a cost reporting level, and the
lower level breakdowns of the CPCIs cover the same products and activities
as the contract WBS elements defined in Appendix B of this standard.

5.6 Software development and maintenance facilities. Software development
and maintenance facilities that are deliverable as part of the system

acquisition will be identified at level 2 of the contract WBS with a level
3 breakdown into the following elements: equipment, services, facilities

(that is, brick and mortar type construction), and initial operation and
maintenance. Equipment will be broken down at level 4 into an integration
and assembly element and the individual hardware and software end items
that are acquired specifically for the facility. If the software end items
are placed under configuration management, the same requirements of this
standard shall apply as for other CPCIs.

6. MISCELLANEOUS

6.1 Financial data reporting. The purpose of MIL-STD-X is to augment the
contract WBS requirements of MIL-STD-881A in the area of software
development. MIL-STD-X can be used in conjunction with DI-F-6000C or
DI-F-6010 to measure contractor performance during a defense system
acquisition program. MIL-STD-X can also be used in conjunction with
DI-F-XXXX to collect resource expenditure data for the purpose of
estimating software development costs for future systems.

(7

(57

a 4,. . - , . . . ,i . i .i i.-...~ l i ? ...~ l , . ,

APPENDIX A

IDENTIFICATION OF SOFTWARE COMPONENTS

IN A WORK BREAKDOWN STRUCTURE

10. SCOPE

10.1 This appendix illustrates the placement of software components in a
work breakdown structure (WBS). This appendix is for illustration only
(refer to paragraph 5.1).

20. PRIME MISSION SOFTWARE AS A SEPARATE ELEMENT AT LEVEL 2

20.1 The following generic WBS, prepared in accordance with MIL-STD-881A,
illustrates the placement of prime mission software as a separate element
at level 2 in the WBS. Prime mission software is broken down at level 3
into analysis and design, integration and test, and the software
subsystems. Each software subsystem is broken down at level 4 into
subsystem analysis and design, subsystem integration and test, and the
CPCIs that comprise the subsystem.

20.2 The other level 2 and 3 WBS elements defined in MIL-STD-881A have
been included for reference only and are not a part of this standard.

20.3 The hardware and software subsystems at level 3 and the CPCIs at
level 4 will be expanded by the DoD component or the contractor into the
particular subsystems and CPCIs that apply to the defense system.

Level I Level 2 Level 3 Level 4

Defense System
Prime Mission
Equipment

Integration and
Assembly

Hardware Subsystem

or End Item

Hardware Subsystem
or End Item

13

(59)

4

:

Level I Level 2 Level 3 Level 4

Prime Mission
Software

Software System
Analysis and Design

Software System
Integration and Test

Software Subsystem 1
* Subsystem Analysis

and Design
Subsystem Integration
and Test

CPCI

Software Subsystem n
Subsystem Analysis
and Design

Subsystem Integration
and Test

CPCI

9.%

Support Software

CPCI

CPCI

Training*

Equipment

Services

Facilities

14

(60)

Iq

,** -. 9.- .* ~ 4~
*l : .9, 0 .k .J ,jL a.".A.' " ',"!" Ol" " N i i " ; i i, -. -" .' , i,-. • 4 '- . . .

Level 1 Level 2 Level 3 Level 4

Peculiar Support
Equipment*

Organizational/
Intermediate

Depot

Systems Test
and Evaluation*

Development Test and
Evaluation

Operational Test

and Evaluation

Mockups

- Test and Evaluation
Support

Test Facilities

System/Program
Management*

.. aeSystems Engineering

Project Management

Data*
Technical Publications

Engineering Data

Management Data

Support Data

Data Depository

Operational/

Site Activation*
Contractor Technical
Support

Site Construction

Site/Ship/Vehicle
Conversion

System Assembly,

15

(61)

6, 'Lad

Leve 1 Level 2 Level 3 Level 4

Installation and
Checkout on Site

Common Support
Equipment*

Organizational/

Intermediate

Depot

Industrial Facilities*

Construction/Conversion/
Expansion

Equipment Acquisition
or Modernization

Maintenance

Initial Spares
and Initial
Repair Parts

30. SOFTWARE SUBSYSTEMS IN PARALLEL WITH HARDWARE SUBSYSTEMS

*, 30.1 The following generic WBS identifies the prime mission software as
separate subsystems in parallel with the hardware subsystems.

30.2 The hardware subsystems, software subsystems and CPCIs will be
expanded by the contractor into the particular subsystems and CPCIs that
apply to the defense system.

Level 1 Level 2 Level 3 Level 4

Defense System

Prime Mission
Equipment

Integration and
Assembly

Hardware Subsystem 1

Software Subsystem 1
Subsystem Analysis
and Design

16

(62)

• -' ," . .- , (-'. '. -. ,- .. , , .- ,- • . '...',. - .

Level 1 Level 2 Level 3 Level1 4

Subsystem Integration
and Test

CPCI

Hardware Subsystem n

Software Subsystem .
Subsystem Analysis

S and Design
Subsystem Integration' and Test
CPCI

CPcI

Support Software
CPCI

CPCI

Train ing*

Equipment

Services

Facilities

17

(63)

• -5'. o "

Level 1 Level 2 Level 3 Level 4

Peculiar Support
Equipment*

Organizat iona 1/
Intermediate

Depot

Systems Test
and Evaluation*

Development Test and
Evaluation

Operational Test
and Evaluation

Mockups

Test and Evaluation

Support

Test Facilities

System/Program
Management*

M e Systems Engineering

Project Management

Data*

Technical Publications

Engineering Data

Management Data

Support Data

Data Depository

Operational/
Site Activation*

Contractor Technical
Support

.', 18

'. (64)
Se

• 'l "/ " .""" '% '',"" ". .".". ."". .-. ."",-.-.-.. '.. '* S "S*. " ."'"".*." S"S S'. "' *, .']" '. .r- ' ' ' S' S'

Level 1 Level 2 Level 3 Level 4

Site Construction

Site/Ship/Vehicle
Conversion

System Assembly,

Installation and
Checkout on Site

Common Support
Equipment*

Organizational/
Intermediate

Depot

.N" Industrial Facilities*

Construct ion/Conversion/
Expansion

Equipment Acquisition
or Modernization

Maintenance

Initial Spares
and Initial
Repair Parts*

40. SOFTWARE AS A SINGLE ELEMENT UNDER PRIME MISSION EQUIPMENT

40.1 The following generic WBS identifies the prime mission software as a
'S. single level 3 element under prime mission equipment with a level 4

breakdown into analysis and design, integration and test, and the CPCIs
that comprise the software system.

- .40.2 The hardware subsystems and CPCIs will be expanded by the DoD
component or the contractor into the particular subsystems and CPCIs that
apply to the defense system.

.°

"! 19

• (65)

,.

Level 1 Level 2 Leve 1 3 Leve 1 4

Defense System

Prime Mission

Equipment

Integration and
Assembly

Hardware Subsystem
or End Item

Hardware Subsystem
or End Item

Prime Mission
Software

Software System
Analysis and Design
Software System
Integration and Test

CPCI

CPCI

Support Software~CPCI

Training*

Equipment

S Services

Facilities

20

(66)

-'V.

Level 1 Level 2 Level 3 Level 4

Peculiar Support
Equipment*

Organizational/
Intermediate

Depot

Systems Test

and Evaluation*

Development Test and

Evaluation

Operational Test

'V and Evaluation

41: Mockups

Test and Evaluation
%- Support

Test Facilities

System/Program
Managemen t*

Systems Engineering

Project Management

Data*

Technical Publications

Engineering Data

Management Data

Support Data

Data Depository

Operational/
Site Activation*

Contractor Technical

Support

Site Conpstruction

21

(67)

4'.., ,%- ., , ,.,... • ; ;, , . . . , - , . - .. ,, . . . , , ,,, - , . . - .,,,, . .. - . . - . . . ,.

Level I Level 2 Level 3 Level 4

Site/Ship/Vehicle
Conversion

System Assembly,
Installation and
Checkout on Site

Common Support
Equ ipmen t*

Organizat ional/

Intermediate

Depot

Industrial Facilities*

Construction/Conversion/
Expansion

Equipment Acquisition
or Modernization

- Maintenance
-I.

Initial Spares
and Initial
Repair Parts

WComputer programs may be acquired or developed to support these

activities. Such software must be identified in the CWBS, per paragraph
5.1.5.

22

(68)

"--. AL P -

.- ' . . - - . - ., - - . . . -, , . 7! W 7 - , . W (, a . . .

p57
..

APPENDIX B

WORK BREAKDOWN STRUCTURE ELEMENTS
FOR COMPUTER PROGRAM CONFIGURATION ITEM DEVELOPMENT

10. SCOPE

- 10.1 This appendix establishes and defines work breakdown structure (WBS)

elements for computer program configuration item (CPCI) development.

20. CPCI WBS ELEMENTS

20.1 The following level 4, 5, and 6 WES elements apply to a CPCI
development. The level at which a CPCI appears in the contract WBS will be
determined per paragraph 5.1. If a CPCI appears at a level higher or lower
than level 4, the levels of the WBS elements defined below will be adjusted
accordingly.

20.2 Tailoring of this appendix for CPCIs that are not entirely new
software development is addressed in paragraph 5.4.

20.3 The computer program components (CPCs) presented at level 5 will be
expanded by the contractor into the particular CPCs that apply to the CPCI.

Level 4 Level 5 Level 6

Computer Program Con-

figuration Item (CPCI)

CPCI Requirements
Definition (Development
Specification)

CPCI Design (Product

Specification)

Computer Program

Component (CPC)

CPC Design
CPC Code & Debug i

CPC Integration & Checkout

23

(69)

4 . - ° , w a - ° ° - - .

4 .: , . , , . , ,- ,
- , • -. . . -. -,- • . , .• . . .-. .. .*

Leve 4 Level 5 Level 6

Computer Program
Component (CPC)

CPC Design
CPC Code & Debug

CPC Integration & Checkout

CPCI Data Generation/
Conversion

CPCI Integration and

Informal Test

CPCI Qualification Tests

CPCI Related Documents

CPCI System Test Support

and Initial Maintenance

30. DEFINITIONS

30.1 CPCI Requirements Definition (Development Specification). The
software-related engineering and design activity undertaken to

define, evaluate, and revise as necessary the CPCI requirements.
This activity results in the Computer Program Development
Specification for the CPCI.

30.1.1 The definition effort includes specifying CPCI requirements
such as the following:

a. The structure and logic of the application (for example,
mathematical formulation)

b. Bounds on design parameters (that is, ranges of parameter
values for which the CPCI gives valid results)

c. Input/output message types, formats, and data rates

d. Database requirements (for example, data types, structures,
data element characterization)

e. Performance (for example, accuracy, execution timing, and
response times as functions of workloads) in normal and failure
modes

f. Built-in test for failure identification

g. Transition to and from failure modes

h. Provisions for future growth (for example, extra memory,
auxiliary storage, channel capacity, and processor capacity)

24

(70)

- - - ~ --rZ N7-. r - -

i. Classified data (if any)

j. Man-machine interface (if any)

k. Interfaces with other CPCIs, systems, or segments

1. Government-furnished software that the CPCI must
incorporate

m. Site adaptation parameters

n. Main and auxiliary memory allocations

o. Testing requirements against which detailed CPCI test plans
and procedures must be written.

30.1.2 The evaluation activity includes:

a. Examining new or revised CPCI requirements for clarity,
consistency, completeness, testability, relative worth, and
traceability to the system or segment specification

b. Reporting identified problems to those responsible for
their correction.

30.1.3 The requirements revision activity includes:

a. Identifying and assessing the technical, schedule, and cost
impacts of proposed changes to the CPCI (or other CIs, subsystems,
or the system) on the CPCI requirements, design, coding, test,
integration, or documentation

b. Preparation and review of formal engineering change
proposals and specification change notices or their equivalents.

30.2 CPCI Desian (Product Specification). The activity undertaken
to prescribe the structure and functions of a CPCI and the methods
of its implementation; to assess this structure and methodology for
correctness, completeness, simplicity, and efficiency; and to revise
it as necessary. This activity normally entails drafting the CPCI
Computer Program Product Specification to specify the detailed CPCI
design prior to coding, revising the Product Specification during
the CPCI development, and then finalizing the Product Specification
after the CPCI has been tested. The results of this activity
typically include:

a. CPCI decomposition:

(1) identification of each Computer Program Component
(CPC)

"-I

25

(71)

(2) allocation of the CPCI functional requirements among
the CPCs

(3) specification of each CPC's inputs, outputs, and

functions

(4) detailed definition of the interfaces among the CPCs

(5) flowcharts or other graphical representation of the
logic of CPC interaction.

(6) Program listings

b. Implementation methodology:

(1) allocation of storage among modules and assemblies

(2) common modules to be used

(3) techniques to be used to design the software in
accordance with specified constraints and standards

c. Other:

(1) data structures (for example, files, tables,
parameters)

(2) service of interrupts

(3) algorithms (for example, logic, formulas) given in the
mathematical formulation and in other requirements

(4) standards for code structure

(5) parameter boundary conditions (that is, range of
parameter values over which the CPCI gives valid
results)

(6) error handling and reporting

(7) initial system start-up, system shutdown and recovery.

d. Assessment of the original or revised CPCI design for
correctness, completeness, simplicity, and efficiency. This
assessment may include simulation of selected CPCI logic to generate
input and output mappings, plus execution time data, which can be
compared to the CPCI functional and performance requirements.

26

(72)

- ' *,.°V '' \\ ~ - . . .

30.3 Computer Program Component (CPC). The detailed design,
implementation (coding, compilation and debugging of lower level
modules), integration (assembly of lower level modules into the
operational CPC), and checkout of the CPC to verify its correctness
and proper performance as a unit. This activity ends when the CPC
is released to be integrated with other CPCs to form the CPCI.

30.3.1 CPC Design. The activity undertaken to prescribe the method
of the CPC implementation to the level of detail necessary before
the start of coding; to assess this prescription for correctness,
completeness, simplicity, and efficiency; and to revise the
prescription as necessary. This activity encompasses:

a. Identifying the modules and subassemblies of the CPC

b. Allocating functions to each module

c. Specifying module input and output

d. Diagramming module interaction logic

e. Allocating storage among modules

f. Identifying common modules

g. Identifying CPC data structures (for example, files,
tables, parameters)

h. Verifying selected CPC logic (for example, generating
input/output mappings, generating execution time data and comparing
it to specified execution times)

i. This element excludes all coding activity, even if such
activity results in direct translation of performance requirements
into source code.

30.3.2 CPC Code and Debug. The activity undertaken to implement
the design of the CPC in software including:

a. Learning the latest version of the related Product
Specification (or equivalent)

b. Learning the programming language to be used

*c. Translating CPC module design into source language
instructions and data per the design specified in the latest version
of the Computer Program Product Specification (or equivalent)

d. Generating or modifying the source instructions needed to
integrate the set of coded modules comprising the CPC

e. Compiling the code and correcting compilation errors

27

(73)

f. Reviewing code by the responsible programmers, by peers,
and/or via symbolic execution of the logic

g. Correcting code defects

h. Adding comments to source listings during the generation of
source instructions.

i. Assuring compliance with programming documentation
standards.

30.3.3 CPC Integration and Checkout. The activity undertaken to
integrate the modules that comprise the CPC into an operational
whole, and plan and conduct tests that verify the correct
performance of the parts of the CPC and the proper performance of
the CPC operating as a unit. This activity includes integration and
test planning, procedure development, test data preparation,
determination of expected results, test execution, error
identification, and data reduction. This element excludes the
modification of the CPC to correct errors identified during
integration and checkout; such activity is encompassed by CPC Code
and Debug.

30.4 CPCI Data Generation/Conversion. The activity undertaken to
generate, or convert into a new character representation or format,
data that is read and/or manipulated by the CPCI while carrying out
its function. This excludes data structures developed as part of
the CPCI to control its operation.

30.4.1 Data Keneration activities include:

a. Analyzing the CPCI data requirements by reviewing the
latest version of the CPCI Computer Program Product Specification
(or equivalent)

b. Designing the physical data structres

c. Analyzing documents necessary to determine the content of
the data records

d. Translating the data requirements into data records

e. Entering, formatting, and storing the data records in
machine readable other form

f. Devising and running tests to ensure that the data records
are correct and complete

g. Documenting the data structure and contents of the data
records.

28

(74)

30.4.2 Data conversion encompasses the activity undertaken to
convert existing data to the form or format needed by the CPCI.
This activity includes:

a. Translating character codes

b. Reformatting data records

c. Sorting translated data records

d. Devising and running tests to ensure correct and complete
conversion results

e. Documenting the relationship between the original and
translated data.

f. This activity excludes the conversion of existing code to a
new source language or a new version of an existing source language.
Such activity is encompassed by CPC Code and Debug.

30.5 CPCI Integration and Informal Test. The activity undertaken
to plan and conduct tests that verify correct and proper performance
of the CPCI operating as a whole prior to formal qualification
testing. Although government personnel are sometimes contractually
allowed to observe these tests, the tests do not normally require
government approval of plans, procedures and results, as do formal
qualification tests.

30.5.1 The planning activity encompasses:

a. Defining test scope and objectives

b. Establishing the test approach, acceptance criteria,
verification methods, order of integration, inputs, and methods to
record results

c. Establishing test locations, schedules, and
responsibilities of those involved.

30.5.2 The conduct and analysis activity encompasses:

a. Developing test procedures

b. Preparing test data and expected results

c. Executing the test procedures and recording test results

d. Reducing test results (for example, calculation of

performance
parameters from test results), identifying errors and preparing test
data sheets

e. Reporting results.
29

(75)

30.6 CPCI Qualification Tests. The activity undertaken to devise
and revise as necessary plans and procedures for testing the CPCI
against its Computer Program Development Specification (or
equivalent), to exercise those procedures, collect test results,
analyze the results, identify problems, and report test results.
This includes all activity related to the Preliminary Qualification

*" Tests (.'QT) and Formal Qualification Tests (FQT) of the CPCI. This
activity excludes investigation and isolation of problems,
formulation of computer program design and code changes, and
implementation of computer program changes. These activities are
encompassed by the WBS elements under which these efforts were
originally performed.

30.6.1 The test planning activity encompasses:

a. Defining test objective and scope

b. Establishing the test approach, acceptance criteria,
verification methods, data recording methods, and data reduction
methods

c. Establishing test locations, schedules, and
responsibilities of those involved.

30.6.2 Test procedures include the activity undertaken to draft and
subsequently update the detailed procedures for verifying the
correct operation and satisfactory performance of the CPCI in
relation to the Computer Program Development Specification (or
equivalent) test requirements and test plans. This activity
typically involves specifying:

a. Operator actions and expected responses

b. Test inputs and expected results

c. Data tables to be used

d. Data reduction methods

e. Support software such as special test data recording
software, playback software, data reduction software and other
software needed to supply test input, record or reduce test output,
or to control test sequencing

f. Simulators of external equipment or hardware subsystems
interfacing with the computer to be used to test the CPCI

g. Cross-references to the CPCI test plan and Computer Program
Development Specification (or equivalent) test.

30

"4 (76)

30.6.3 Test conduct and analysis includes the activity undertaken
to perform iterative runs of the CPCI qualification tests (for
example, PQT and FQT). This activity includes carrying out the
formal test procedures in the presence of the government, collecting
and reducing test results, analyzing the test results, and reducing
data to verify correct performance (or detect errors). The data
reduction activity encompasses:

a. Inserting into test data sheets test results obtained from
playback of automatically-recorded data, produced during execution
of the formal CPCI tests

b. Calculating and transforming recorded data into forms that
can be compared to expected results, where such calculations and
transformations may be done by hand or with computer program
support.

30.6.4 The analysis and error detection activities include:

a. Identifying discrepancies between expected and observed
CPCI qualification test results

b. Diagnosing each discrepancy

c. Suggesting changes to the CPCI requirements, design,
implementation documentation, or test procedures necessary to
correct detected errors.

30.6.5 Test report preparation includes the engineering activity
undertaken to draft and revise as necessary the formal qualification
test reports. The test report typically includes:

a. Completed test data sheets

b. Data reduction results

c. Test logs

d. Detected errors

e. Suggested corrections to requirements, design,
implementation methods, and test procedures necessary to correct
detected errors

f. Recommendations for additional testing

g. Conclusions.

Note: This element excludes the activity undertaken to transform
the test report format from contractor format to the format
specified in the CDRL. Such cost is encompassed by level 2 WBS
element Data.

31

(77)

A,"

-7

30.7 CPCI Related Documents. The engineering effort to prepare
CPCI-related documents that are in addition to the development and
product specifications, test plans, test procedures, test reports,
and other documents which are the direct result of the other CPCI
elements. This includes such activity as the preparation of users'
manuals, CPCI maintenance documents, etc.

Note: This activity excludes such effort that can be reduced or
will not be incurred if the corresponding data item is eliminated
from the Contract Data Requirements List (CDRL). Such costs are
encompassed by the level 2 WBS element called "Data".

30.8 CPCI System Test Support and Initial Maintenance. The
activity undertaken to modify the CPCI design and code, informally
test the modifications, retest the CPCI, and revise the CPCI
specifications and other documentation to resolve problems
identified during system and subsystem level integration and test.
This includes corrective maintenance of the CPCI conducted by the
contractor prior to responsibility transfer to the government.

32

(78)

.9i

ATTACHMENT 2

DATA ITEMA DESCRIPTIO 2 IDENTIFICATION NOWS
AGENCY NUMBER

Software Acquisition Resource Expenditure (SARE) Data USAF
Col lection

a. .- I[. - --TION/I * bPOS - -4. APP OV AL . .ATE

a. This data item description (DID) is one of two TBD
documents that comprise the Software Acquisition Resource 5. OFFICE, oF PRIMARY,,

Expenditure (SARE) data collection methodology. The other is RESPoNSIDL(T

MIL-STD-X, "Software Work Breakdown Structures for Defense AFSC/ESD
System Acquisitions." This DID collects technical informa-
tion about software cost drivers to supplement cost/schedule .OCNUID

data reported for software-related WBS elements established TBD

by MIL-STD-X. The purpose of the SARE methodology is to 8 PRVLL.TTO
(Continued on Page 2) .A IOVA LMATN

7A@ PIC AT ION/IN T ERN[LAT ION8IINP TBD

7.1 Application

This DID applies to defense system acquisition programs 9 •9 ER, NC Es (-n-,ory a.. itd i

to which MIL-STD-881A (Work Breakdown Structures for Defense
block,10)

Materiel Items) and MIL-STD-X (Software Work Breakdown D--00
Structures for Defense System Acquisitions) are applied. DI-F-60100

7.2 Interrelationship MIL-STD-881A
MIL-STD-X

This DID provides technical information on software cosl
drivers to supplement cost/schedule data reported on DIoF-
6000C (Cost Performance Report) or DI-F-6010 (Cost/Schedule (Continued on Page 2)

Status Report) for software-related WBS elements established
in accordance with MIL-STD-881A and MIL-STD-X. .CSL,,UM89ft(S,

10. PREtIPARIATION INSTRU*CTIONS

a. The contractor shall report the information specified on the forms contained
herein according to the schedule specified in the CDRL. Instructions for completing
each form and the definitions of individual data items are provided on the instruction

pages.

b. The direct labor hours, direct labor dollars, and total dollars rep~orted on
the Resource Expenditure Summary shall be from WBS elements established in accordance
with MIL-STD-881A and MIL-STD-X. The reporting levels are specified in the CDRL.

i c. Each form shall be signed and dated by the person(s) preparing the information

and the person approving it for delivery. The CDRL reporting milestone for which the

information is being prepared shall also be identified.

JU14 so PAE OF 43 PAGES

DD ,; .1664 (79)

4-' ' V;: /, V 4 ' ? '' ?? ...- . -.-.-...-.- ?,- -...-. -.-..- -....-..- ,

3. Description/Purpose (Continued)

create a database which can be used to develop, calibrate, and maintain
software cost estimating models for defense programs and to measure the
impact of new technologies, tools, and techniques on software quality and
product i vi ty.

b. This DID contains five forms for reporting information about the

software and software development environment on a defense system

acquisition program:
(1) Program Summary

(2) CPCI Summary
(3) CPC Summary
(4) Database Sunary
(5) Resource Expenditure Summary

These forms have been derived from the parameters of popular software cost
estimating models, the COCOMO model in particular (Boehm 1981), and from
data collection forms used by the NASA Software Engineering Laboratory
(NASA SEL). The sources are referenced wherever data item definitions
have been taken with little or no modification.

9. References (Continued)

(Boehm 1981). B. W. Boehm, Software Engineering Economics,
Englewood Cliffs, N. J.: Prentice Hall, Inc., 1981

(NASA SEL). "NASA/SEL Data Collection Forms," Griffiss Air Force
Base, N. Y.: Illinois Institute of Technology Research
Institute, Data and Analysis Center for Software (DACS) for
the Rome Air Development Center, undated

Page 2 of 43 Pages (80)

-'. -. - -- .. -- .. - ' - " . - .. " " - "-" -". - I- . -I' --. - Z L

*" INSTRUCTIONS FOR COMPLETING THE
PROJECT SUMMARY FORM

a-. This form is used to provide information about the project as a

whole that affect the software development. Information reported
early in the project shall be estimated as accurately as
practicable. Intermediate reports shall contain actuals if known
and updated estimates. The final report shall contain all actual
data. In cases where the reporting of actual data is limited by
measurement accuracy, the reported value should reflect at least 90
percent confidence. Data items shall be continued on separate pages
if additional space is needed.

1. PROJECT DESCRIPTION

1.1 List of Interfacing Systems. List other systems with which the
system under development must communicate. Indicate if an
interfacing system is concurrently under development.

1.2 Maior Software Products. Describe the major deliverable
software products of the project.

2. RESOURCES

Reusable Items From Similar Projects. List previous projects that
will contribute to the software developed on this project. For
each, indicate the approximate number of deliverable source
instructions (as defined in 3.1 below) that will be adapted to the
current project. Indicate the approximate percentage of the adapted
software's design which must be modified to adapt to the newobjectives and environment. Indicate the percent of the adapted

software's code which must be modified. Also, indicate the
approximate percentage of effort required to integrate and test the
adapted software compared to the normal amount of integration and
test effort for a new development of comparable size and difficulty.
The percentages of design modification, code modification, and
integration may be greater than 100 percent if the effort required
is greater than the effort which would have been needed to develop
the software from scratch. (Boehm 1981), (NASA SEL)

(81)

.-7

3. TOTAL SYSTEM SIZE

3.1 Deliverable Source Instructions. Indicate the total number of
deliverable source instructions in the software system, excluding
source lines that are entirely source code documentation and source
instructions from unmodified utility software. Include job control
language instructions, format statements, and data declarations as
well as logic control instructions. An instruction is defined to be
a line of code or card image. A line of code that contains more
that one source statement is still considered one source
instruction; a five-line data declaration counts as five
instructions. (Boehm 1981)

3.2 Source Code Documentation. Indicate the total number of lines
of source code documentation delivered with the software system.
The sum of the number of deliverable source instructions in 3.1 and
the number of lines of source code documentation equals the total
number of lines of code delivered in the software system.

3.3 Deliverable Machine Instructions. Indicate the equivalent
number of machine instructions corresponding to the deliverable
source instructions in 3.1.

3.4 Database Size. Indicate the total size of the computer
databases delivered as part of the defense system software. This
refers to the amount of data (in bytes or characters) to be
assembled and stored in nonmain storage (that is, tapes, disks,
drums, etc.) by the time of system delivery. (Boehm 1981)

-a.

4. DIFFICULTY

4.1 Fault Tolerance Requirements. Indicate the types of faults the

system must be tolerant to.

4.2 Failure Recovery Mode. Indicate the failure recovery mode.

4.3 Security Requirements. Indicate the level of security
required.

4.4 List all organizations developing software which will
contribute to the software system. Include other contractors,
subcontractors, and government organizations. Also, for each
organization (including the reporting contractor), identify all
locations where software will be developed (for example, "XYZ Corp.
(San Diego, CA; Waltham, MA)").

(82)

.. 2-

5. TECHNIQUES EMPLOYED

For each category below, identify the techniques employed at
each of the system, subsystem (if any), CPCI, and CPC levels (that
is, at least one technique must be identified at each level). Also
identify any other levels at which a formal technique is used (for

-.-. example, module level) and identify the technique. (NASA SEL)

* 5.1 Specification.

1', Functional - Components are sputified as a set of functions
with each component performing a certain action.

Procedural - Components are specified in some algorithmic
manner (for example, using a program design language).

English- Components are specified using an English language
prose statement of the functions.

Other - Identify any other formal method used to specify the
components.

5.2 Design.

Top Down - The implementation of the system one level at a
time, beginning at the highest level and expanding downward to
subroutines which were yet to be determined at the previous,
higher level.

Bottom Up - The implementation of the system starting with the
lowest level routines and integrating upward, one level at a
time, to the higher level routines.

Iterative Enhancement - The implementation of successive
implementations, each producing a usable subset of the final

product, until the entire system is fully developed.

Hardest First - The implementation of the most difficult
aspects of the system first.

None - No particular strategy has been specified.

Other - Describe the strategy used if it is not a combination
of the above.

5.3 Development. Same as 5.2 Desian.

(83)

- '0.

*44

5.4 Coding.

Structured Code with Simulated Construct - The programming
language does not enforce structured coding techniques (for
example, FORTRAN) but structured coding constructs will be
simulated.

Structured Code - Structured coding techniques are enforced by
the programming language or by some other means, such as
preprocessors.

None - No particular coding structure has been specified.

Other - Describe any other coding standards being used.

5.5 Testing.

Top Down - Stubs or dummy procedures are written to handle the
yet to be implemented components of the system, and testing
begins with the top level routines and proceeds as new
components are added at lower levels.

Bottom Up - Checkout of the software is conducted starting with
the bottom level modules, using test drivers to simulate the
upper level components.

. Structure Driven - The structure of the software component is
used to determine test cases and test procedures.

Specification Driven - The software specifications are used to
determine the test cases and test procedures independent of, or
in addition to, the structure of the software.

None - No testing approach has been specified.

Other - Describe any other approach to determining test
procedures being used.

5.6 Validation/Verification: Inspection - Visual examination of

.. the design and/or code.

Peer Review - Visual inspection of the code or design by other
.,- programmers.

- Walk Through - Formal meetings to review the design or code by
members of the project team for the purpose of identifying
potential probl-ms or improvements.

%- (84)

Proof - Formal proofs of the correctness of the design or code.
Describe the techniques used (for example, axiomatic, predicate
transforms, functional, etc.).

None - No inspection techniques have been specified.

Other - Describe any other approach to V&V inspection used.

6. FORMALISMS USED

Identify the formalisms used during software development. For
each, give the levels (system, subsystem, CPCI, CPC) at which the
formalism is being used. (Note: "HOS" refers to an analysis and
design methodology developed by Higher Order Software, Inc.) (NASA
SEL)

7. AUTOMATED TOOLS USED

Place a check next to the types of automated tools used to
support software development. Also, identify any other automated

tools used which are not included in the list. Include tools that
existed prior to the project and those developed as part of the
project. (Boehm 1981)

8. SOFTWARE STANDARDS

List all standards (including in-house standards) that are
being applied to the software development. For each standard, give
the title, the date of issue, and indicate whether it is required by
the contract or optional. (NASA SEL)

9. PROJECT SCHEDULE

9.1 Proiect Milestones. Give the expected or, if known, the actual
date of each listed project milestone. Indicate whether the date
given is estimated or actual. If a milestone is being held in
increments, indicate the dates of the first and final occurrences
and the number of increments. Place "N/A" next to the listed
milestones that do not apply to the project. Identify any
additional project milestones not listed at which technical progress
on the software system development is to be evaluated.

(85)

4', .. , -'-, .- -'- '; '; ''5 ':, '''=-..,,' ';''-.- 2'.'J 2"-"- - -"-. . ,,-.-, . -. ' . .

J - '-' " _ - " i -° " r"r-" - . r- - r . = -. -. -- -V .. - -. - .-, . , - - . - -

9.2 Perceived Schedule Acceleration/Stretch-out. Indicate the
degree of schedule acceleration or stretchout compared to other
projects of comparable size and difficulty. Use the following
guidelines to determine the ratings:

Severe Acceleration - attempting to complete the development in
75 percent or less of the normal time required for a comparable
project without schedule constraints.

Moderate Acceleration - attempting to complete the development
in 85 percent of the normal time required for a comparable
system without constraints.

Nominal - the schedule is appropriate for a project of this
size and complexity.

Moderate Stretchout - the schedule is approximately 130 percent
of the time normally required for a comparable project.

Severe Stretchout - the schedule is approximately 160 percent
of the time normally required for a comparable project. (Boehm
1981)

10. SYSTEM-LEVEL SOFTWARE-RELATED DOCUMENTATION

For each document listed, give the date the final version is to

be delivered and the number of pages in the document that address
software (including figures). Indicate whether the date and number
of pages are estimated or actual. Identify all other system-level
documents developed that relate to software (that is, do not include
documents directly associated with individual CPCIs).

11. CORPORATE EXPERIENCE

Indicate the percentage of the software system that falls into
each experience category. The percentages are based on the
deliverable source instructions defined in 3.1.

(86)

-V"1 .- 9 i- .- '' '_' "- t". 2 t".".'L '''u o' " . . '. % , . . - - .' . % % ' t - ' ' "

PROJECT SUMMARY

PROJECT DATE

CONTRACTOR CONTRACT NO._ _ _

1. PROJECT DESCRIPTION

1.1 LIST OF INTERFACING SYSTEMS

1.2 MAJOR SOFTWARE PRODUCTS

2. RESOURCES

REUSABLE ITEMS FROM SIMILAR PROJRCTS:
PROJECT # DSI % DESIGN MOD. % CODE MOD. % INTEGR'N REQ'D

% %

3. TOTAL SYSTEM SIZE

3.1 DELIVERABLE SOURCE INSTRUCTIONS EXCLUDING SOURCE CODE DOCUMENTATION: INSTRUCTIONS

3.2 LINES OF SOURCE CODE DOCUMENTATION: LINES

3.3 DELIVERABLE MACHINE INSTRUCTIONS: INSTRUCTIONS

3.4 DATABASE SIZE: BYTES

4. DIFFICULTY

4.1 FAULT TOLERANCE REQUIREMENTS: (CHECK THOSE THAT APPLY.)

INPUT ERRORS HARDWARE FAILURES SOFTWARE FAILURES NONE

4.2 FAILURE RECOVERY MODE:

BATCH REAL TIME

4.3 SECURITY REQUIREMENTS:

DEDICATED SYSTEM HIGH MIXED MODE NONE

4.4 LIST OF SOFTWARE DEVELOPMENT ORGANIZATIONS AND SITES:

,'.

- (8Page 9 of 43 pages" (87)-

*4

*,, , , .-. ,.- KI§,-,.,- W -W-,. °-. .-.. . --. .- -..

5. TECHNIQUES EMPLOYED (IDENTIFY ALL TECHNIQUES USED AT EACH LEVEL)

5.1 SPECIFICATION: SYSTEM SUSSYS CPCI CPC OTHER (SPECIFY)

FUNCTIONAL

PROCEDURAL

ENGLISH

OTHER:

5.2 DESIGN: SYSTEM SUBSYS CPCI CPC OTHER (SPECIFY)

TOP DOWN

BOTTOM UP

ITERATIVE ENHANCE

HARDEST FIRST

NONE

OTHER:

5.3 DEVELOPMENT: SYSTEM SUSSYS CPCI CPC OTHER (SPECIFY)

TOP DOWN

BOTTOM UP

ITERATIVE ENHANCE

HARDEST FIRST

NONE

OTHER:

5.4 CODING: SYSTEM SUBSYS CPCI CPC OTHER (SPECIFY)

SIMULATING CONSTRUCT

STRUCTURED CODE

NONE

OTHER:

5.5 TESTING: SYSTEM SUSSYS CPCI CPC OTHER (SPECIFY)

TOP DOWN (STUBS)

BOTTOM UP (DRIVERS)

SPECIFICATION DRIVEN

STRUCTURE DRIVEN

NONE

OTHER:

Page 10 of 43 pages (88)

' " ." " V " r ;' " ' , " '-',: '. ,_' " ", ,- " .. .,' ". . ". _._, " ". ,,-' ". ", _ " " -', " - '"

5.6 VALIDATION/VERIFICATION: INSPECTION SYSTEM SUBSYS CPCI CPC OTHER (SPECIFY)

PEER REVIEW

WALK THROUGHS ___ ___ ____

PROOF

* NONE

a , OTHER:

6. FORMALISMS USED
SYSTEM SUBSYS CPCI CPC OTHER (SPECIFY)

PDL:_____________________________

HIPO CHARTS

FLOWCHARTS

CHAPIN CHARTS

BASELINE DIAGRAMS (TREE CHARTS)

SROS

OTHER:
OTHER:

7. AUTOMATED TOOLS USED

,.. RATING TOOL USED

VERY LOW ASSEMBLER
BASIC LINKER
BASIC MONITOR
BATCH DEBUG AIDS

LOW HOL COMPILER
MACRO ASSEMBLER
SIMPLE OVERLAY LINKER
LANGUAGE INDEPENDENT MONITOR
BASIC SOURCE EDITOR
BASIC LIBRARY AIDS

-d BASIC DATABASE AIDS

NOMINAL REAL-TIME OR TIME SHARING OPERATING SYSTEM
DATABASE MANAGEMENT SYSTEM
EXTENDED OVERLAY LINKER
INTERACTIVE DEBUG AIDS
SIMPLE PROGRAMMING SUPPORT LIBRARY
INTERACTIVE SOURCE EDITOR

NIGH VIRTUAL MEMORY OPERATING SYSTEM

DATABASE DESIGN AID
SIMPLE PROGRAM DESIGN LANGUAGE
PERFORQ.NCE MEASUREMENT AND ANALYSIS AIDS
PROGRAMMING SUPPORT LIBRARY WITH

BASIC CONFIGURATION MANAGEMENT AIDS
SET-USE STATIC ANALYZER
CONTROL FLOW STATIC ANALYZER
PROGRAM FLOW AND TEST CASE ANALYZER

BASIC TEXT EDITOR AND MANAGER
FILE MANAGER

(89) Page 11 of 4. pages

a ,, "."% -, -- "*".,-% . "% , .-- ".. , "% % o •. . , ",, . . . - . , . -. - ° " . ,-

7. AUTOMATED TOOLS USED (CONTINUED)

RATING TOOL USED

VERY HIGH FULL PROGRAMMING SUPPORT LIBRARY
DOCUMENTATION SYSTEM
PROJECT CONTROL SYSTEM
REQUIREMENTS SPECIFICATION LANGUAGE AND ANALYZER
EXTENDED DESIGN TOOLS
AUTOMATED VERIFICATION SYSTEM

4. FAULT REPORT SYSTEM
SPECIAL PURPOSE TOOLS:
CROSSCOMPILERS
INSTRUCTION SET SIMULATORS
DISPLAY FORMATTERS

COMMUNICATIONS PROCESSING TOOLS
DATA ENTRY CONTROL TOOLS
CONVERSION AIDS
STRUCTURED LANGUAGE TOOL

OTHER AUTOMATED TOOLS:

8. SOFTWARE STANDARDS

TITLE DATE OF ISSUE REQ-D OPT-L

9. PROJECT SCHEDULE

9.1 PROJECT MILESTONES DATE EST'D ACT'L NUMBER

A. CONTRACT AWARD

B. SYSTEM REQUIREMENTS REVIEW (SRR)

C. SYSTEM DESIGN REVIEW (SDR)

D. PRELIMINARY DESIGN REVIEW (PDR) - FIRST

E. PDR - FINAL

F. CRITICAL DESIGN REVIEW (CDR) - FIRST

G. CDR - FINAL

V H. PRELMINARY QUALIFICATION TEST - FIRST

I. PQT - FINAL

J. FORMAL QUALIFICATION TEST (FQT) - FIRST

K. FQT - FINAL

Page 12 of 43 pages

:' ,- . • - *. . . *-* * ... ~. -.............-. -...... .-.-

* -II55~5 ~ -

-. ~7- 7- 7 -

PROJECT MILESTONES (CONTINUED) DATE EST'D ACT'L NUMBER

L. INTEGRATION OF CPCIS INTO SYSTEM - START

M. INTEGRATION OF CPCIS INTO SYSTEM - END

N. DEVELOPMENT TEST & EVALUATION (DT&E) - START

0. DT&E - END

P. INITIAL OPERATIONAL TEST &
EVALUATION (IOT&E) - START

Q. IOT&E - END

R. FUNCTIONAL CONFIGURATION AUDIT (FCA)

S. PHYSICAL CONFIGURATI)N AUDIT (PCA) _______________ ______

T. FORMAL QUALIFICATION REVIEW (FQR)

U. SYSTEM DELIVERY

V. CONTRACT END

OTHER:

OTHER:

OTHER:

OTHER:

9.2 PERCEIVED SCHEDULE ACCELERATION/STRETCHOUT (CHECK THE APPROPRIATE LEVEL):

A. SEVERE ACCELERATION (75%)

B. MODERATE ACCELERATION (85%)

C. NOMINAL (100%)

D. MODERATE STRETCHOUT (130%)

E. SEVERE STRETCHOUT (160%)

10. SYSTEM-LEVEL SOFTWARE-RELATED DOCUMENTATION

TITLE DELIVERY DATE I PAGES EST'D ACT'L

SYSTEM ENGINEERING MANAGEMENT PLAN

COMPUTER PROGRAM DEVELOPMENT PLAN

I OTHER .1. , SYSTEM TEST PLAN

OTHER: _,_ _ _

OTHER: "

OTHER:

OTHER:

OTHER:

Page 13 of 43 pages
(91)

II. CORPORATE EXPERIENCE

GIVE PRECENT OF THE SOFTWARE SYSTEM THAT FALLS INTO EACH CAnTGOILY tTwAL - 1UUt):

A. THE COMPANY HAS BUILT COMPARABLE SYSTEMS WITH SIMILAR REQUIREMENTS.

B. THE COMPANY HAS NEVER BUILT A SYSTEM WITH SIMILAR REQUIREMENTS,
BUT SIMILAR SYSTEMS HAVE BEEN BUILT AND TECHNICAL ASSISTANCE IS AVAILABLE
TO THE COMPANY.

C. THE COMPANY HAS NEVER BUILT A SYSTEM WITH SIMILAR REQUIREMENTS AND,
ALTHOUGH SIMILAR SYSTEMS HAVE BEEN BUILT, NO TECHNICAL ASSISTANCE IS
AVAILABLE TO THE COMPANY.

D. PROVED THEORY INDICATES A SYSTEM WITH THESE REQUIREMENTS CAN BE BUILT,
BUT A SYSTEM WITH TRIBE EXACT REQUIREMENTS HAS NEVER BEEN BUILT. %

E. THE FEASIBILITY OF BUILDING THE SYSTEM DEPENDS ON THE RESOLUTION OF
PIVOTAL RESEARCH PROBLEMS IN THIS TECHNICAL AREA. %

PREPARED BY DATE

APPROVED BY DATE

REPORTING MILESTONE

Page 1..4 of 43 pages (92)

' , ,+ , . . ,, . . , - - + .. ._- + . . - . . , - - . . ,, , . . ' ,, ,1x ° ,..,+ ' , '

INSTRUCTIONS FOR COMPLETING
THE CPCI SUMMARY FORM

This form is used to provide information about characteristics
of the CPCI that affect its development. A CPCI Summary will be
provided for each CPCI according to the schedule specified in the
CDRL. Information reported early in the CPCI development will be
estimated as accurately as practicable. Intermediate reports will
contain actuals if known and updated estimates. The final report
will contain all actual data. In cases where the reporting of
actual data is limited by measurement accuracy, the reported value
should reflect at least 90 percent confidence. Data items shall be
continued on separate pages if additional space is needed.

1. DESCRIPTION

1.1 Brief Description. Provide a brief description of the purpose

of the CPCI in the system.

1.2 CPCI Functions. List all of the software functions from Table
1 that are performed by the CPCI. Describe any additional functions
that are not included in Table 1.

1.3 Development Computer(s). Identify the computer(s) the CPCI is
being developed on. (NASA SEL)

1.4 Target Computer(s). Identify the computer(s) the CPCI is
targeted for in the system. (NASA SEL)

1.5 Indicate whether any of the target computers are being
developed concurrently with the CPCI.

1.6 Virtual Machine Volatility. Indicate the level of virtual
machine volatility experienced (or expected) during the CPCI
development. The "virtual machine" is the complex of hardware and
software that the CPCI calls upon to accomplish its tasks. For
example, the virtual machine for an operating system is the computer
hardware; the virtual machine for a database oriented
user-application system may include the computer hardware, an
operating system, and a database management system. Use the
following guidelines to determine the rating:

Low - if major changes occur less than every 12 months, or if
minor changes occur less than once per month.

(93)

Table 1

Software Functions

Type Category Index Function

Operational Displays 1.1 Avionics
1.2 Command, Control, & Communications
1.3 Other

Avionics 2.1 Mission Planning
2.2 Navigation
2.3 Aircraft Steering & Flight Control
2.4 Sighting, Designation & Location Determination
2.5 Weapon Delivery
2.6 Electronic Countermeasures
2.7 Other

Command, 3.1 Network Monitoring
Control, & 3.2 Network Control & Switching
Communication 3.3 Sensor Control

3.4 Signal Processing
3.5 Message Processing
3.6 Message Distribution
3.7 Message Logging & Retrieval
3.8 Data Reduction
3.9 Other

Executive 4.1 Computer Resource Management
4.2 Computer Operator Interface
4.3 Other Terminal Operator Interface
4.4 Special Device Interface
4.5 Other Input or Output
4.6 Error Handling/Reconfiguration/Recovery
4.7 Multicomputer Configuration. Control
4.8 Performance Monitoring & Data Collection
4.9 Other

Data Base 5.1 On-Line Data Base Retrieval & Output
5.2 On-Line Data Base Initialization & Updating
5.3 Other

Training 6.1 Control of Exercise Sequencing
6.2 Operator Performance Data Collection
6.3 Other

On-Line 7.1 System Readiness Test
Equipment 7.2 Computer Diagnostic
Diagnostic 7.3 Memory Diagnostic

7.4 Display Diagnostic
7.5 Switch/Indicator Panel Diagnostic
7.6 I/O Diagnostic

7.7 Mode Diagnostic
7.8 Other

(94) Page 16 of 43 Pages
.1

:4F - -p

II

Table 1

Software Functions (continued)

Type Category Index Function

Support Operating 8.1 Computer Resource Management
System 8.2 Computer Operator Interface

8.3 Terminal Operator Interface

8.4 Input or Output
8.5 Error Handling/Reconfiguration/Recovery
8.6 Performance Monitoring & Data Collection
8.7 Other

Equipment 9.1 Off-Line Computer Diagnostics
Maintenance 9.2 Other

Software 10.1 Higher-Order Language Compiler
Development 10.2 Assembler

10.3 Debugger
10.4 Loader or Editor

10.5 Other

Off-Line 11.1 Data Base Definition
Data Base 11.2 Data Base Initialization or Updating

Sanagement 11.3 Data Base Retrieval & Output Formatting
11.4 Data Base Restructuring
11.5 Off-Line Data Base
11.6 Other

Design 12.1 Data Base Design

12.2 Data Base Processor Design
12.3 Performance Simulation
12.4 Data Reduction
12.5 Data Analysis
12.6 Other

Test 13.1 Test Case Generation

Software 13.2 Test Case Data Recording
13.3 Test Data Reduction
13.4 Test Analysis
13.5 Other

Utilities 14.1 Media Conversions
* 14.2 Format Translation

14.3 Sort/Merge
14.4 Program Library Maintenance
14.5 Other

Page 17 of 43 Pages ()

Table 1

Software Functions (concluded)

Type Category Index Function

Support Off-Line 15.1 Data Reduction
(cont.) Training 15.2 Training Analysis

15.3 Scenario Preparation
15.4 Other

Project 16.1 Project Event Status Accounting
Management 16.2 Schedule Maintenance/Projection

16.3 Financial Accounting
16.4 Software Cost Reporting
16.5 Hardware Cost Reporting
16.6 Software Cost Prediction

16.7 Hardware Cost Prediction
16.8 Other

Hardware 17.1 Interfacing Hardware Simulations
Subsystem 17.2 Environmental Simulations
Simulations 17.3 Operator Action Simulations

17.4 Other

Page 18 of 43 pages

(96)

S. , ,-".<".-,' :.- .',:.;:-:.-"-;:--'--,.. :i---- .-> -:> .-. ,-:--,..- -: -

AD-I0i37 084 SOFTWARE ACQUISITION RESOURCE EXPENDITURE (SARE) DATA 2/2
I COLLECTION METHODOLOGY(U) MITRE CORP BEDFORD MA
I R L DUMAS DEC 83 MITR-9031 ESD-TR-83-214

UNCLSSIFIED F19628-82-C-8881 F/G 912 N

mEEEEEEEEEEEEE1
EEEEEEommoE-

. lp -

11.01 W 8 1.

,,-., -_

I;. &-.-'

Igo

11uL.25 W [l111 16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 -A

.I- , kA

. _ _ , * _ __ i.PL_

Nominal - if ,ivor changes occur every 6 months, or minor
changes occur every 2 weeks.

High - if major changes occur every 2 months, or minor changes
occur every week.

Very High - if major changes occur every 2 weeks, or minor
changes occur every 2 days.

A change is considered major if it significantly affects 10 percent
or more of the routines under development. A change is considered
minor if it affects 1 percent or less of the routines under
development. (Boehm 1981)

2. RESOURCES

Reusable Items From Similar Proiects. List previous projects that
will contribute to the software developed on this project. For
each, indicate the approximate number of deliverable source
instructions (as defined in 3.1 below) that will be adapted to the
current project. Indicate the approximate percentage of the adapted
software's design which must be modified to adapt to the new
objectives and environment. Indicate the percentage of the adapted
software's code which must be modified. Also, indicate the
approximate percentage of effort required to integrate and test the
adapted software compared to the normal amount of integration and
test effort for a new development of comparable size and difficulty.
The percentage are of design modification, code modification, and
integration may be greater than 100 percent if the effort required
is greater than the effort which would have been needed to develop
the software from scratch. (Boehm 1981), (NASA SEL)

3. SIZE

3.1 Deliverable Source Instructions. Indicate the total number of
deliverable source instructions in the CPCI, excluding source lines
that are entirely source code documentation and source instructions
from unmodified utility software. Include job control language
instructions, format statements, and data declarations as well as
logic control instructions. An instruction is defined to be a line
of code or card image. A line of code that contains more that one
source statement is still considered one source instruction. (Boehm
1981)

(97)

,-

3.2 Source Code Documentation. Indicate the total number of lines
of source code documentation contained in the CPCI. The sum of the
number of deliverable source instructions in 3.1 and the number of
lines of source code documentation equals the total number of lines
of code delivered in the CPCI.

3.3 Deliverable Machine Instructions. Indicate the equivalent
number of machine instructions corresponding to the deliverable
source instructions in 3.1.

3.4 Non-Deliverable Support Software. Indicate the approximate
number of source instructions developed as support software to aid
in the development of the CPCI that are not deliverable as part of
the CPCI (for example, test drivers, stubs, debug aids, etc.).

3.5 Database Size. Indicate the size of the computer database(s)
accessed by the CPCI. This refers to the amount of data (in bytes
or characters) accessed by the CPCI which are to be assembled and
stored in nonmain storage (that is, tapes, disks, drums, etc.) by
the time of system delivery. (Boehm 1981)

3.6 Size Breakdown Al Language. Indicate the percentage of the
% CPCI source instructions written in each language used. Base the

percentages on the number of lines of deliverable source defined in
4. 3.1.

3.7 Size Breakdown Bl Operation. Indicate the approximate
percentage of the deliverable CPCI source instructions which fall
into each of the following categories:

Data storage and retrieval - for example, operation of data
storage devices, database management, secondary storage
handling, data blocking and deblocking.

Online communications - Machine to machine communication with
queuing allowed, limited timing restrictions.

Real-time communications and control - machine to machine
communications with tight timing constraints, queuing not
practical, heavy hardware interface, strict protocol
requirements.

Interactive operations - real-time man/machine interfaces,
human consideration-: and error protection very important.

Mathematical operations - routine mathematical operations.

(4.

String manipulation - routine applications; typical sorting,
formatting, buffer manipulations, etc.

Operating systems - task management, memory management, heavy
hardware interfaces, many interactions, high reliability and
strict timing requirements.

3.8 Number of Modules. Indicate the number of modules that
comprise the CPCI. For the purposes of this data collection
form, a module is defined to be the smallest discrete part of a
CPCI with an identifiable function and which can be
individually compiled or assembled. (NASA SEL)

3.9 Size of Modules. Give the range of module size based on the
number of deliverable instructions defined in 3.1. (NASA SEL)

4. SPECIFICATIONS

4.1 Form of Specification. Indicate the form of the CPCI
specification and the levels at which each form is used (that is,
CPCI, CPC, module, etc.). The specification techniques are defined
in paragraph 4.1 of the Instructions for Completing the Project
Summary. (NASA SEL)

4.2 Precision of Specification. Rate the precision of the
development specification. The specification is very precise if no
additional analysis is needed before the detailed design can be
developed, precise if only trivial details have to be defined, and
imprecise if a great deal of additional analysis is required. (NASA
SEL)

5. INTERFACES

5.1 Number of Components Called. Give the number and names of the

other CPCIs in the software system that are called by this CPCI.
(NASA SEL)

5.2 Number Calling This CPCI. Give the number and names of theother CPCIs in the software system that call this CPCI. (NASA SEL)

5.3 Number of Different Input/Output Formats. Indicate the number
of different input formats the CPCI must process and the number of
different output formats it produces. Include program calls,
interrupts, data base records, displays, and other transactions the
CPCI is designed to process or produce.

(99)

-]

6. DIFFICULTY

6.1 Percent Utilization. For each of the resources listed, check
the range that describes the percentage of the resource that is used
during the worst case mode of operation of the CPCI with respect to
that resource. The percentage is expressed as the percentage of the
total available resource that is used by the CPCI and any other
software components concurrently consuming the resource. (Boehm
1981)

6.2 Security. Indicate whether a DoD security classification
applies to the CPCI or to any of it inputs or outputs.

6.3 Protection. Indicate whether the CPCI is required to satisfy
any privacy or protection requirements.

6.4 Multiple Site Configuration. Indicate the number of sites the
CPCI will operate at. In the case of software embedded in a defense
item such as an air vehicle, ship, tank, radio, etc., indicate the
total number of copies expected to be produced. Also indicate the
number of distinct configurations of computers, computer
peripherals, and other equipment on which the CPCI will operate.

6.5 Required CPCI Reliability. Indicate the required CPCI
reliability using the following guidelines:

Very Low - The effect of a software failure is simply the
inconvenience placed on the developers to fix the fault. (For
example, demonstration software or an early feasibility-phase
simulation model.)

Low - The effect of a software failure is a low level, easily
recoverable loss of capability without significant penalty.
(For example, off-line training software.)

Nominal - A software failure can result in a moderate loss of
system capability, but from which recovery can be achieved
without extreme penalty. (For example, off-line equipment
diagnostics, utilities, performance monitoring software, etc.)

High - A software failure can result in a major loss of system
capability but does not endanger human life. (For example,
communications, sensor control, etc.)

Very High - A software failure can result in loss of human
life. (For example, aircraft collision avoidance, command and
control systems, etc.) (Boehm 1981)

(100)

• '''' 'o''" ..- ,- .- , ' .- . ,- . - .-. - . . . -. - - . .

6.6 Complexity. Indicate the level of CPCI complexity. Base the
ratings on those given in Table 2 for the various types of functions
that may be performed by the CPCI. (Boehm 1981)

7. C014PUTER ACCESS

7.1 Indicate the percentage of source instructions (excluding

source code documentation) developed using each type of access to
the computer.

7.2 Computer Turnaround Time. Indicate the average turnaround time

for a job, that is, the time between when a job is submitted and the
time the results are available to the developer. (Boehm 1981)

8. CPCI MILESTONES

Give the expected or, if known, the actual date of each project
milestone. Indicate whether the date given is estimated or actual.
If a milestone is being held in increments, indicate the dates of
the first and final occurances and the number of increments. Place
"N/A" next to the listed milestones that do not apply to the
project. Identify any additional milestones not listed at which
technical progress on the CPCI development is to be evaluated.

9. DOCUMENTATION

For each document listed, give the date the final version is to
be delivered and the number of pages in the document (including
figures). Indicate whether the dates and number of pages are
estimated or actual. Identify all other deliverable and
non-deliverable documents developed specifically for the CPCI in
addition to those listed.

10. PERSONNEL

10.1 Averaze Experience of Personnel. Indicate the average
experience of the CPCI development personnel in each of the areas
listed. (Note: "virtual machine" is defined in 1.6.) (Boehm 1981)

10.2 Average Quality of the CPCI Development Personnel. Rate the
average quality of personnel in each category who are involved in
the development of the CPCI. The ratings are in terms of
percentiles with respect to the overall populations of
analysts/designers, programmers, and testers. For example, if the

(101)

.%'

Table 2

CPCI Complexity Versus Function

Contiol Computational Device-Dependent Data Management

Rating Operations Operations Operations Operations

Very Straightline Evaluation Simple read, Simple arrays
Low code with of simple write statements in main memory

a few non- expressions: with simple
nested SP for example, formats
operators: A=B+C*(D-E)
DOs, CASEs,
IFTHEN-
ELSEs.
Simple
predicates

Low Straight Evaluation No cognizance Single file
forward of moderate needed of par- subsetting with
nesting of level ex- ticular pro- no data struc-
SP oper- expressions, cessor or I/O ture changes,
ators. e.g., D=SQRT device charac- no edits, no
Mostly (B**2-4.*A*C) teristics. I/O intermediate
simple done at GET/PUT files
predicates level. No cog-

nizance of
overlap

Nominal Mostly sim- Use of stan- I/O processing Multifile input
ple nesting. dard math and includes device and single file
Some inter- statistical selection, sta- output. Simple
module con- routines. tus checking structural
trol. Deci- Basic matrix and error pro- changes, simple
sion tables and vector cessing edits

operations

High Highly nest- Basic numer- Operations at Special purpose

ed SP oper- ical analy- physical I/O subroutines ac-
ators with sis: multi- level (physical tivated by data
many com- variate in- storage address stream con-
pound predi- terpolation, translations; tents. Complex
cates. ordinary seeks, reads, data restruc-
Queue and differential etc). Optimized turing at re-
stack equations. I/O overlap cord level

Page 24 of 43 pages

(102)

Table 2 (Concluded)

Control Computational Device-Dependent Data Management

Ratingi OPerations Operations Operations Operations

control. Basic trun-
considerable cation, round-
intermodule off concerns
control

Very Reentrant Difficult Routines for A generalized,

high and recur- but struc- interrupt diag- parameter-
sive coding. tured NA: nosis, ser- driven file
Fixed-prior- nearsingular vicing, masking. structuring
ity inter- matrix Communication routing. File
rupt hand- equations, line handling building,
ling partial dif- command pro-

ferential cessing, search
equations optimization

Extra Multiple Difficult Device timing- Highly coupled
high resource and unstruc- dependant co- dynamic rela-

scheduling tured NA: ding, micro- tional struc-
with dyna- highly ac- programmed tures. Natural
mically curate anal- operations language data
changing ysis of management
priorities, noisy, sto-
Microcode- chastic data
level
control

Page 25 of 43 pages

(103)

II

W.7 7:. 7. 7-7_

analysts/designers are considered average (50 percent) check the box
under 36 to 55 percent. The ratings should take into consideration
basic ability, efficiency and thoroughness, and ability to
communicate and work with others. The ratings should not consider
experience, which is covered in 10.1. (Boehm 1981)

10.3 Experience With Modern Programming Practices. Indicate the

relative experience of the CPCI development personnel using modern
programming practices (defined in 5. of the Project Summary Form).
Use the following guidelines to determine the ratings:

Very Lou - no use of modern programming practices.

Low - Beginning, experimental use of some modern programming
practices.

Nominal - Reasonably experienced in the use of some modern
-programming practices.

High - Reasonably experienced in the use of most modern
programming practices.

Very High - Routine use of all modern programming practices.
(Boehm 1981)

10.4 Indicate how the experience levels and quality of the CPCI

development team were determined.

11. SOFTWARE CHANGES

Indicate the number of cost and no cost engineering change proposals
(ECPs) submitted during each phase of the CPCI development that
impacted the CPCI. Indicate the number of ECPs approved during each
phase and the sum of the costs of the approved ECPs. Also indicate
the number of software trouble reports opened and closed during each
phase of the CPCI development.

(104)

*% ,---- S .- - *-. .S -. .S *

C . - Tr - .X

PROJECT CI'C SUMMARY DT
PROJ ECT ___________________________ ____ DATE ____________

CpcI CONFIGURATION NO.

1. DESCRIPTION

I. BRIEF DESCRIPTION

1.2 CPCI FUNCTIONS - LIST ALL FUNCTIONS FROM TABLE I THAT ARE PERFORMED BY THE CPCI:

TYPE CATEGORY INDEX FUNCTION

OTHER:

OTHER:

1.3 DEVELOPMENT COMPUTER(S)

1.4 TARGET COMPUTER(S)

4 1,5 IS THE TARGET COMPUTER BEING DEVELOPED CONCUERENTLY WITH THE CPCI?

1.6 VIRTUAL MACHINE VOLATILITY (CHECK THE APPROPRIATz LEVEL):

A. LOW

B. NOMINAL

C. HIGH

D. VERY HIGH

2. RESOURCES

1 PROJECT/COMPONENT # DSI 2 DESIGN HOD. 2 CODE NOD. % INTEGR'N REQ'D

% %%

Page 27 of A3 pages

- _ _t,___ __ __ _ _ 2 ____ ___ ___ ___

(105) Pg 7o ae

%. L%. L% .- - ~*5 .*5... . . .

4
.J!

3. SIZE

3.1 DELIVERABLE SOURCE INSTRUCTIONS EXCLUDING SOURCE CODE DOCUMENTATION: _________INSTRUCTIONS

3.2 LINES OF SOURCE CODE DOCUMENTATION: _________LINES

- ~3.3 DELIVERABLE MACNINE INSTRUCTIONS: _________INSTRUCTIONS

3.4 NOW-DELIVERABLE SUPPORT SOFWARE: _________INSTRUCTIONS

*3.5 DATABASE SIZE: BYTES

3.6 SIZE BREAKDOWN BY LANGUAGE (TOTAL -100%):

LANGUAGE PERCENTAGE LAGAEPERCENTAGE

ASSEMBLY % ALGOL

COBOL _____ FORTRAN ____

JOVIAL z PL/I_____

ADA 1 MICROCODE____

OTHER: % OTHER:____

OTHER: 2 OTHER: _____z

3.7 SIZE BREAKDOWN BY OPERATION (TOTAL -1001):

A. DATA STORAGE AND RETRIEVAL %

B. ONLINE COMMIUNICATIONS ________

.. I

C. REAL-TINE COMMAND AND CONTROL %

D. INTERACTIVE OPERATIONS X

E. MATHEMATICAL OPERATIONS L%

F. STRING MANIPULATION %

3. G. OPERATING SYSTEMS T

3.8 NUMBER OF MODULES: _______

3.9 SIZE OF MODULES: SMALLEST LARGEST AVERAGE

4. SPECIFICATIONS

4.1 FORM Of SPECIFICATION: (CHECK ALL THAT ARE USED AND GIVE THE LEVEL)

CPCI CPC OTHER (SPECIFY)

A. FUNCTIONALSEM

B. PROCEDURAL. IC

C. ENGLISH___ __________________

D. OTHER: ._ OT _ :

Page 28 of 43 pages (106)

A.~~~~~~A: DAASORG NDRTIEA

4.2 PRECISION OF SPECIFICATION:

A. VERY PRECISE A. PRECISE C. IMPRECISE

5. INTERFACES

5.1 NUMBER OF COMPONENTS CALLED: NAMES:

5.2 NUMBER CALLING THIS C"CI: NMES:

5.3 NUMBER OF DIFFERENT I/O FORMATS: INPUT OUTPUT

6. DIFFICULTY

6.1 PERCENT UTILIZATION: < 50% 511 TO 70% 711 TO 85% 86% TO 95% ,1

A. MAIN STORAGE

B. PERIPHERAL STORAGE

C. EXECUTION TIME

6.2 SECURITY: DOES A DOD SECURITY CLASSIFICATION APPLY TO THE CPCI OR ANY OF ITS INPUTS/OUTPUTS?

6.3 PROTECTION: IS THE CPCI REQUIRED TO SATISFY ANY PRIVACY OR PROTECTION REQUIREMENTS?

6.4 MULTIPLE SITE CONFIGURATION:

A. NUMBER OF DISTINCT SITES

B. NUMBER OF DISTICT CONFIGURATIONS

6.5 REQUIRED CPCI RELIABILITY (CHECK APPROPRIATE LEVEL):

A. VERY LOW

B. LOW

C. NOMINAL

D. HIGH

E. VERY HIGH

6.6 COMPLEXITY (CHECK THE APPROPRIATE LEVEL):

A. VERY LOW

B. LOW

C. NOMINAL

D. HIGH

E. VERY HIGH

(107) Page 29 of 43. pages

....................

- r - .

7. COMPUTER ACCESS

7.1 PERCENTAGE OF SOURCE INSTRUCTIONS DEVELOPED USING EACH OF THE FOLLOWING (TOTAL - 100%):

A. BATCH %

B. DEDICATED PROCESSOR %

C. TEST BED WITH HIGH PRIORITY %

D. TEST BED WITH LOW PRIORITY %

E. INTERACTIVE %

7.2 COMPUTER TURNAROUND TIME:

A. LOW (INTERACTIVE)

B. NOMINAL (< 4 1RS)

C. HIGH (4 TO 12 HRS)

D. VERY HIGH (> 12 IRS)

H. CPCI MILESTONES

MILESTONES DATE EST'D ACT'L NUMBER

A. DESIGN START

B. PRELIMINARY DESIGN REVIEW (PDR) - FIRST

C. PDR - FINAL

D. DEVELOPMENT SPECIFICATION APPROVAL

E. CRITICAL DESIGN REVIEW (CDR) - FIRST

F. CDR - FINAL

G. CODING & DEBUG - START

H. CODING & DEBUG - COMPLETION

I. INFORMAL TEST AND INTEGRATION - START

J. INFORMAL TEST AND INTEGRATION - COMPLETION

K. PRELIMINARY QUALIFICATION TEST (PQT) - FIRST

L. PQT - FINAL

M. FORMAL QUALIFICATION TEST (FQT) - FIRST

N. FQT - FINAL

0. PRODUCT SPECIFICATION APPROVAL

P. FUNCTIONAL CONFIGURATION AUDIT (FCA)

Q. PHYSICAL CONFIGURATION AUDIT (PCA)

OTHER:

OTHER:

OTHER:

Page 30 of 43 pages (108)
A

%

S- -.- . - - - . . . , -. - .-if'.- -. ~-- . - . -. . v •.u . - .• v ,, -, .,,.e . .,,.. : .- ,,.,.,..-.:.- -.. ,.:- .. o. ., .,..., -, -.-. ..-- -.-.- ... -...........-.... :... ,... ..--.... n..-.

*17

9. DOCUMENTATION

TITLE DELIVERY DATE * PAGES EST'D ACT'L

A. CPCI DEVELOPMENT SPECIFICATION

B. CPCI PRODUCT SPECIFICATION

C. TEST PLAN

D. TEST PROCEDURES

E. TEST REPORT

F. USER'S MANUAL

G. OTHER:

H. OTHER:

I. OTHER:

J. OTHER:

10. PERSONNEL

10.1 AVERAGE EXPERIENCE OF PERSONNEL
< 4 NOS 4 NOS TO I YR I TO 3 YRS 3 TO 6 YRS > 6 YEARS

A. APPLICATION AREA

B. TECHNIQUES TO BE USED

C. LANGUAGES TO BE USED

D. VIRTUAL MACHINE

E. SUPPORT SOFTWARE/TOOLS

10.2 AVERAGE QUALITY OF THE CPCI DEVELOPMENT PERSONNEL (PERCENTILES):

< 15% 16 - 35% 36 - 55% 56 - 75% 76 - 90% > 90%

A. ANALYSTS/DESIGNERS

B. PROGRAMMERS

C. TESTERS

D. OVERALL

10.3 EXPERIENCE WITH MODERN PROGRAMMING PRACTICES:

A. VERY LOW

B. LOW

C. NOMINAL

D. HIGH

E. VERY HIGH

(109) Page 31 of 43 pages
.(109)

-p

10.4 PERSONNEL EVALUATION IS BASED ON:

A. CORPORATE AVERAGES

B. SPECIFIC TEAM MEMBERS

C. OTHER:

11. SOFTWARE CHANGES

ENGINEERING CHANGE PROPOSALS S/W TROUBLE REPORTS

PHASE # SUBMITTED # APPROVED EST. COST OPENED CLOSED

A. IRELIMINARY DESIGN $
(CONTRACT AWARD TO PDR)

B. DETAILED DESIGN $
(PDR TO CDR)

C. CODE & DEBUG $_
(CDR TO T&I START)

D. TEST & INTEGRATION $
(T&I START TO FQT)

E. SYSTEM-TEST/IOC $
(FQT TO CONTRACT END)

TOTALS $

PREPARED BY DATE

APPROVED BY DATE

REPORTING MILESTONE

Page 32 of 43 pages
(110)

... l %--

INSTRUCTIONS FOR COMPLETING
THE CPC SUMMARY FORM

The CPC Summary is used to provide information about
characteristics of the CPC that affect its development. A CPC
Summary will be provided for each CPC according to the schedule
specified in the CDRL. Information reported early in the CPC
development will be estimated as accurately as practicable.
Intermediate reports will contain actuals if known and updated
estimates. The final report will contain all actual data. In cases
where the reporting of actual data is limited by measurement
accuracy, the reported value should reflect at least 90 percent
confidence. Data items shall be continued on separate pages if

additional space is needed.

1. DESCRIPTION

1.1 Brief Description. Provide a brief description of the of the

purpose of the CPC within the CPCI.

1.2 Software Functions. List all of the software functions from
Table 1 that are performed by the CPC. Table 1 is provided in the
Instructions for Completing the CPCI Summary Form. Describe any
additional functions that are not included in Table 1.

1.3 Development Computer(s). Identify the computer(s) the CPC is
being developed on. (NASA SEL)

1.4 Target Computer(s). Identify the computer(s) the CPC is

targeted for in the system. (NASA SEL)

2. SIZE

2.1 Deliverable Source Instructions. Indicate the total number of

deliverable source instructions in the CPC, excluding source lines

that are entirely source code documentation and source instructions

from unmodified utility software. Include job control language
instructions, format statements, and data declarations as well as
logic control instructions. An instruction is defined to be a line
of code or card image. A line of code that contains more that one

source statement is still considered one source instruction. (Boehm
1981)

A..

- -~ ' - - - . --- 7- -:-- - - .---- -- - - -I - ------ ''- --- '.'.-7

.

2.2 Source Code Documentation. Indicate the total number of lines
of source code documentation contained in the CPC. The sum of the
number of deliverable source instructions in 2.1 and the number of
lines of source code documentation equals the number of lines of
code delivered in the CPC.

2.3 Deliverable Machine Instructions. Indicate the equivalent
number of machine instructions corresponding to the deliverable
source instructions in 2.1.

2.4 Non-Deliverable Support Software. Indicate the approximate
number of source instructions developed as support software to aid
in the development of the CPC that are not deliverable as part of
the CPC (for example, test drivers, stubs, debug aids, etc.).

2.5 Database Size. Indicate the size of the database(s) accessed

by the CPC. This refers to the amount of data (in bytes or
characters) accessed by the CPC that is to be assembled and stored
in nonmain storage (that is, tapes, disks, drums, etc.) by the time
of system delivery. (Boehm 1981)

2.6 Size Breakdown 11 Language. Indicate the percentage of
deliverable source instructions defined in 2.1 which are written in
each language.

2.7 Size Breakdown By Operation. Indicate the approximate
percentage of deliverable source instructions defined in 2.1 which
fall into each category. The categories are defined in 3.7 of the
CPCI Summary Form.

2.8 Number of Modules. Indicate the number of modules that
comprise the CPC. For the purposes of this data collection form, a
module is defined to be the smallest discrete part of a CPC with an
identifiable function and which can be individually compiled or
assembled. (NASA SEL)

2.9 Size of Modules. Give the range of module size based on the
number of deliverable source instructions defined in 2.1. (NASA
SEL)

3. INTERFACES

3.1 Number of Other CPCs Called. Give the number and names of the
other CPCs in the CPCI that are called by this CPC. (NASA SEL)

3.2 Number Calling This CPC. Give the number and names of the
other CPCs in the CPCI that call this CPC. (NASA SEL)

(112)
4.

*4

*I

.1

.4' .* % ..'..* . ."-.°..-.". ..e"". • f - , * , " ° ." o " " . " e
o

. * " . • t
I

t" . "

3.3 Number of Different Input/Output Formats. Indicate the number
of different input formats the CPC must process and the number of
different output formats it produces. Include program calls,
interrupts, data base records, displays, and other transactions the
CPC is designed to process or produce.

4. UTILIZATION

For each of the resources listed, check the range that

corresponds to the percentage of the resource that is used during

the worst case mode of operation for the CPC with respect to that

resource. The percentage is expressed as the percentage of the
total available resource that is used by the CPC and all other

software components concurrently consuming the resource. (Boehm

1981)

,4'

4,

(113)

.V.

6

CPC SUMMARY

PROJECT DATE

CPC CONFIGURATION NO.

1. DESCRIPTION

1.1 BRIEF DESCRIPTION

1.2 SOFTWARE FUNCTIONS (LIST ALL FUNCTIONS FROM TABLE I THAT APPLY)

TYPE CATEGORY INDEX FUNCTION

OTHER:

OTHER:

I.3 DEVELOPMENT COMPUTER(S)

1.4 TARGET COMPUTER(S)

2. SIZE

" 2.1 DELIVERABLE SOURCE INSTRUCTIONS EXCLUDING SOURCE CODE DOCUMENTATION: INSTRUCTIONS

2.2 LINES OF SOURCE CODE DOCUMENTATION: LINES

2.3 DELIVERABLE MACHINE INSTRUCTIONS: INSTRUCTIONS

2.4 NON-DELIVERABLE SUPPORT SOFWARE: INSTRUCTIONS

2.5 DATABASE SIZE: BYTES

2.6 SIZE BREAKDOWN BY LANGUAGE (TOTAL " 1002):

LANGUAGE PERCENTAGE LANGUAGE PERCENTAGE

ASSEMBLY % ALGOL

COBOL _ FORTRAN _

JOVIAL 2 PL/I

ADA % MICROCODE_____

OTHER: 2 OTHER:

OTHER: _ OTHER: __

Page 36 of 4.3 pages (114)
'°

:.4... - , .. , , . < . . . o,

* I. . .,.... - .. .a'., . .'. . ., , : • , . . . - . , . . ., . , . . : '

*I -27 w -:. -.7 7 27° . -

'I,

-4

2.7 SIZE BREAKDOWN BY OPERATION (TOTAL - 1002):

A. DATA STORAGE AND RETRIEVAL 2

B. ONLINE COMMUNICATIONS 2

C. REAL-TIME COMMAND AND CONTROL 2

D. INTERACTIVE OPERATIONS 2

E. MATHEMATICAL OPERATIONS 2

F. STRING MANIPULATION 2

G. OPERATING SYSTEMS 2

2.8 NUMBER OF MODULES:

2.9 SIZE OF MODULES: SMALLEST LARGEST AVERAGE

3. INTERFACES

3.1 NUMBER OF OTHER CPCS CALLED: NAMES:

3.2 NUMBER CALLING THIS CPC: _ANEs: NA

3.3 NUMBER OF DIFFERENT 1/0 FORMATS: INPUT OUTPUT .°,_

4. UTILIZATION

PERCENT UTILIZATION: < 502 512 TO 702 712 TO 85% 86% TO 952 > 952

A. MAIN STORAGE

B. PERIPHERAL STORAGE

C. EXECUTION TIME

.r"

PREPARED BY DATE

APPROVED BY DATE ._

REPORTING MILESTONE

(115) Page 37 of 43 pages

%?
, % ,,, . .,-' %j,,%,,.,% tV.. ,rtr -,, . :,<. .--.-.J,. ..a-.- .. .--..".-" ..'-. -.... ,.* -..-.....- '. . -- .' ..-...., .. --... -.. "

a ! d d !t, ' ." ' -- ,= .

INSTRUCTIONS FOR COMPLETING THE

DATABASE SUMMARY FORM

A Database Summary will be provided for each computer database

to be assembled and stored on nonmain storage (that is, disks,
drums, tapes, etc.) and delivered under the contract. This includes
databases dedicated to individual CPCIs as well as databases
accessed by multiple CPCIs. Information reported early in the
project will be estimated as accurately as practicable.
Intermediate reports will contain actuals if known and updated
estimates. The final report will contain all actual data. In cases
where the reporting of actual data is limited by measurement
accuracy, the reported value should reflect at least 90 percent
confidence.

1. SIZE

1.1 Database Size. Indicate the size of the database in bytes.

Database size refers to the amount of data (in bytes or Gharacters)
to be assembled and stored on nonmain storage (that is, disks,
drums, tapes, etc.) by the time of system delivery. (Boehm 1981)

1.2 Byte Size. Indicate the number of bits per byte.

2. SOFTWARE COMPONENTS ACCESSING THE DATABASE

Identify the CPCIs that access the database. Indicate the
percentage of the database accessed by each CPCI and indicate
whether the percentage is estimated or actual.

(116)

P , '.' . -' ;, ,. -' ,, '' " , .5, .,,'.,- _ ."- "- -- -- - --" . .'-' -. .- -

DATABASE SUMMARY

PROJECT DATE

DATABASE CONFIGURATION NO.

BRIEF DESCRIPTION

1. SIZE

1.1 DATABASE SIZE: BYTES

1.2 BYTE SIZE: BITS

2. SOFTWARE COMPONENTS ACCESSING THE DATABASE

CPCI PERCENT EST'D ACT'L

PREPARED_ BY DATE

A V Y

REP_ _ _ _ _ _ MILESTONE

(117) Page 39_ of 43pages-~ _ ___ ____ ___ ____ ___ ___ ____ ___ ____ _ 2___

____ ____ ___ ____ ____ ___ ____ ____ __

~~1
--. 4

____ ____ ___ ____ ___ ____ ___ ____ ___ __ 2___

.4....

. . . .V'',' " . -""" - ' " ."- -% -.- ,"- . ." " -"-" " .".' ,","-" ' "- -" ' " ' " -"•" ' " " - " -""" ' * . ' ""% .

INSTRUCTIONS FOR COMPLETING
THE RESOURCE EXPENDITURE SUMMARY FORM

This form provides information on resources expended under

software-related work breakdown structure elements. The reporting
schedule and the WBS reporting levels are specified in the CDRL.

FORM A

1. PROJECT COST SUMMARY

1.1 Negotiated Cost. Enter the total contract cost (excluding fee
or profit) on which agreement has been reached as of the cutoff date
of the report. For an incentive contract, enter the definitized
contract target cost. Amounts for changes will not be included in
this item until they have been priced and included in the contract
through contractual change order or supplemental agreement. For a
fixed-fee contract, enter the estimated cost negotiated. Changes to
the estimated cost will consist only of amounts for changes in the
contract scope of work, not for cost growth.

1.2 Target Price. Enter the negotiated cost plus profit/fee
applicable to the definitized contractual effort.

1.3 Estimated Cost of Authorized. Unpriced Work. Enter the
estimated dollar amount (excluding fee or profit) for all contract
changes for which written authorization has been received but for
which definitized prices have not been incorporated in the contract
through supplemental agreement.

1.4 Estimated Price. Enter the latest revised estimate of the
final price of the contract to the government, including the cost of
all authorized contractual work and applicable profit/fee,
incentives, and cost sharing provisions.

2. OVERHEAD, G&A AND FEES

2.1 Overhead Rate. Enter the overhead rate as a percentage of

direct costs.

2.2 General and Administrative. Enter the General and

9.1Administrative (G&A) costs.

A(118)

*0' .2 ,2 ,€ * ' ' " .' ',. ." " '., -' " '-.. '' , : .-. ,. '.....- '< -. '

2.3 Profit/Fee. Enter the fee or profit percentage which will
apply if the negotiated cost of the contract is met.

2.4 Share Ratio(s). Enter the cost sharing ratio(s) applicable to
costs over/under the negotiated contract costs.

3. DIRECT LABOR CHARGES

3.1 Check all types of labor that are included in direct labor
hours charged to WBS elements.

3.2 Indicate whether or not direct labor hours reported on Form B
include uncompensated overtime. If not, estimate the percentage of
uncompensated overtime as a function of direct labor hours.

FORM B

Month. Indicate the month and year corresponding to the column.

WBS Element. Give the indexes and names of the WBS elements.

Man Hours. Indicate the number of direct labor hours expended under
the WBS element during the month. The number of hours should
include overtime, even if the employees are exempt from overtime
compensation. It should exclude overhead hours such as sick time,
vacation, and personal time.

Labor Dollars. Indicate the direct labor cost for the WBS element
during the month.

Total Dollars. Indicate the total cost for the WBS element for the
month.

(119)

4* _ % '. ' . 4'- ,' ' --. % <" .. ." "•• " •. .. _ •.

. . . .

RESOURCE EXPENDITURE SUMMARY - FORM A

PROJECT DATE

CONTRACTOR CONTRACT NO.

1. PROJECT COST SUMMARY

1.1 NEGOTIATED COST $

1.2 TARGET PRICE $

1.3 ESTIMATED COST OF AUTHORIZED, UNPRICED WORK $

1.4 ESTIMATED PRICE $

2. OVERHEAD, G&A AND FEES

2.1 OVERHEAD RATE %

2.2 GENERAL & ADMINISTRATIVE $

2.3 PROFIT/FEE %

2.4 SHARE RATIO(S)

3. DIRECT LABOR CHARGES

3.1 INDICATE ALL TYPES OF LABOR INCLUDED IN DIRECT LABOR HOURS:

TECHNICAL STAFF (ENGINEERS, PROGRANMERS) HIGHER MANAGEMENT (PROGRAM MANAGERS)
TECHNICAL PROJECT MANAGERS SECRETARIES
PROGRAM LIBRARIANS TECHNICAL AIDES
OTHER: OTHER.

3.2 DO THE LABOR HOURS REPORTED ON FORM B INCLUDE UNCOMPENSATED OVERTIME?

IF NOT, ENTER ESTIMATED PERCENT OF UNCOMPENSATED OVERTIME: _

PREPARED BY DATE

APPROVED BY DATE

RtEPORTINRG MILESTONE
P

PaeS2o.-. pgs 10

I.
*4

(j).

0

U))

I

z z

00

Pag 4 o

E

(2U)z
* '" 0""" "", "",' "• ""'- "- "-" "-""'''- - . -- " ' - -•- - -" ""2 - -

ATTACHMENT 3

SARE EVALUATION QUESTIONNAIRE

14 Instructions

This questionnaire is intended to help reviewers express opinions about
the proposed SARE documents. However, it is not intended to limit the flow of
ideas. Please feel free to provide additional comments outside the structure
of this questionnaire, including returning "red-lined" copies of the documents
themselves.

Please answer the questions frankly and honestly. We will accept your
views as an individual and/or as the official positior of your organization.

Your contribution to this effort is greatly appreciated. Please return
this questionnaire by 1 April 1984 to:

Headquarters, Electronic Systems Division
Director of Cost Analysis
Management and Information Systems Division
Hanscom Air Force Base, MA 01731
Attention: Capt. J. P. Dean, ESD/ACCE

Name Date

Organization

Address Telephone

(123)

_ 5 4 ** 4

SARE EVALUATION QUESTIONNAIRE

PART I - BACKGROUND

1. Are you responding for yourself or your organization?

yourself
your organization

2. Involvement in software cost estimation.

a. Does your organization prepare software cost estimates?

If yes, for what purpose? (check all that apply)

. bidding contracts
internal management
source selection
monitoring (sub)contractor costs

other:

b. Does your organization use software cost estimates?

If yes, for what purpose? (check all that apply)

__'__ internal management
source selection
monitoring (sub)contractor costs

other:

c. Does your organization perform software cost estimation

research?

If yes, which of the following? (check all that apply)

develop/maintain in-house software cost models
evaluate/calibrate commercial models
develop software cost databases

other:

(124)

,,..-......-..

3. Involvement in software acquisition.

What is your organization's involvement in software acquisition?
(check all that apply)

buy/contract for software
develop/supply software products
establish government policy with regard to software acquisition

other:

4. Status of software management in your organization.

a. Do you have a standard work breakdown structure (WBS)
for software?

If yes, to whom is it applied? (check all that apply)

internally
(sub)contractors

other:_____________

b. Do you have standard data collection on

software projects?

If yes, for what purpose? (check all that apply)

internal management
monitor (sub)contractor costs
create a database to support software cost estimation

. -. other:

c. Do you use automated aids to support software cost
estimation or software cost management?

If yes, what types? (check all that apply)

_____in-house developed cost model(s)
commercial software cost models. Which? (optional)

(125)

J,. ,'-,.g--'.. v v ----- ". .' - . -, "- - - - - -. --,- - -

"-I

other aids (for example, cost accounting system). Which?

5. Have you ever used the following on a project?

a. MIL-STD-881A, "Work Breakdown Structures for Defense
Materiel Items?"

, b. DoDI 7000.2, "Performance Measurement for Selected
Acquisitions" (which includes the cost/schedule control
systems criteria)?

6. What types of software systems do you deal with?

Weapon System Avionics

"- .___3Business/Financial

Other:

7. What size software systems do you deal with? (Check all that apply).

less than 50K lines of code

50K to 100K lines of code

__ 1OOK to 250K lines of code

_ Over 250K lines of code

¢ (126)

4-,

Fzi

SARE EVALUATION QUESTIONNAIRE

PART II - PROPOSED SOFTWARE WORK BREAKDOWN STRUCTURE

1. What is your overall evaluation of the proposed WBS?

.,..

2. a. Are the government and contractor responsibilities clear?

If not, what is not clear?

b. In your opinion, are the government and contractor
responsibilities complete and appropriate?

, If not, what is missing or inappropriate?

c. In your opinion, are the WBS requirements and definitions
consistent with existing military regulations
and standards?

If not, what is not correct?

' ::(127)

.°

d. Is the proposed software WBS appropriate for the
types of systems and software your organization
deals with?

If not, what is needed to make it appropriate?

-4.

e. Is the WBS at an appropriate level of detail?

If not, what level would you suggest?

3. Can you recommend any improvements (additions, modifications, or
deletions) to the document?

4. Do you feel the document should become a new military standard,
be incorporated into a revision of MIL-STD-881A, be used as guidance only,
or not be pursued at all?

New military standard

Revision of MIL-STD-881A

Guidance only

Not pursued at all

(128)

-.4

5. If your organization has a standard WBS for software, we would like
to see it. If possible, please enclose a copy with this questionnaire.

Enclosed is a copy of our software WBS.

Our software WBS is proprietary. (Can arrangements be made
to see it?)

, _ We do not have a standard WBS for software.

('.29

%.4

-- S.

4

, , (129)

" 3 """€*.9U*'*9 *S **.*," *'" " "' " C." " ' _ " L "" "' : " "" * -" ' '"C "-" ""

I,

SARE EVALUATION QUESTIONNAIRE

PART III - PROPOSED DATA ITEM DESCRIPTION

1. What is your overall evaluation of the data item description?

2. a. Are the preparation instructions clear?

If not, what is not clear?

ab. Are the preparation instructions complete?

If not, what is missing?

c. Are the definitions of the data items clear

(unambiguous)?

If not, which are not clear?

(130)

4q ..

I . ,..*l .*~. .- '.

4',

d. Are the data items complete (that is, do they cover all
major factors that influence cost)?

If not, what is missing?

e. Are the data items defined appropriately?

If not, which are not appropriate?

f. Can the software cost models used by your organization
be calibrated using the data items?

If not, what is missing?

3. Can you recommend any improvements (additions, modifications, or
deletions) to the document?

(131)

...............................

4. Do you feel the document should become an official data
item description?

If not, why not?

5. If your organization collects data on software projects to
support cost estimation, we would like to know what kinds of
data you collect. If possible, please enclose a copy of your data
collection forms and definitions.

• .Enclosed is a copy of our data collection forms and definitions.

Our data collection forms are proprietary. (Can arrangements
be made to see them?)

We do not collect that kind of data on software projects.

.1-4

4p-.

~(132)

--- -.- - .---°... . .-.- " -..- ..-

SARE EVALUATION QUESTIONNAIRE

PART IV - SUMMARY

K' 1. a. How much would you estimate data collection of this kind would add to
the cost of a defense system acquisition program (as a percentage of
total software cost)?

Less than 2 percent

• _2 percent to 5 percent

5 percent to 10 percent

Greater than 10 percent

b. In your judgement, would such added cost be worth it?

If not, please explain.

2. Any further comments?

7

(133) "q

** ', ,- b " " '; ' ' . % -, " .," w " , V * "*%".'- -. . " .. , "...W" . '- .<•- .* • . -" ".-."." . . -

I-m
U K1 N

1JF

~o

PVN4

AMA

) -,

